学年

教科

質問の種類

数学 中学生

この問題がわかりません!教えてください! 資料の利用です!

1 鹿児島・資料の活用〉 表 右の表は30人が所属しているスポーツクラブで、全員に実施したハンドボー ル投げの記録を度数分布表に整理したものである。記録はすべて整数値であり, 30人の記録の平均値は20.5mであった。ただし,平均値は四捨五入などはされ ていない。 次の(1)~(3)の問いに答えなさい。 (1) 最頻値 (モード)は何mか。 (2) 15m以上 20m 未満の階級の相対度数を求めよ。 (3) このクラブに新しく5人が入り,ハンドボール投げを実施したところ,記録 は下のようになった。 この5人の記録を表に加えて整理した。 次の①,②の問 いに答えよ。 新しく入った5人の記録 (m) 20 19 11 14 27 ① このクラブに所属する35人の平均値は何m か。 ただし, 小数第2位を四 捨五入して答えること。 下のア~オは、この5人の記録を表に加える前と加えた後を比較して述べ たものである。 この中で適切でないものを1つ選び記号で答えよ。 また,そ の理由を根拠となる数値を用いて書け。 ア 範囲(レンジ)はどちらも同じである。 イ 中央値(メジアン) を含む階級の階級値はどちらも同じである。 ウ最頻値 (モード) を含む階級の階級値はどちらも同じである。 エ 記録が20m以上の人数の割合はどちらも同じである。 オ 15m以上20m未満の階級の相対度数はどちらも同じである。 (1) (2) 階級 (m) 以上 10 5~10 15 2 2 2 2 2 2 2 25 20 20 25 30 - 35 30 未満 計 15 度数 (人) 理由 1 5 6 12 5 1 30 m m 適切でないもの

回答募集中 回答数: 0
歴史 中学生

誰か時間があるときでもいいんで、教えてください。

クリスマスまでには帰れるさ・成金の出現 1 第一次世界大戦前に①1) 「ヨー 「ロッパの火薬庫」とよばれた半 島を何といいますか。 また, ② この半島を,Ⅰのア~エから 1 つ選びなさい。 (2) ①ⅡIの協力関係を何といいま すか。 また、2第一次世界大戦 では連合国側について参戦したI Xの国名を書きなさい。 (3) について答えなさい。 ① 日本が中国に提出したの 要求を何といいますか。 記 日本が中国に対 し, 1915年に皿を提出した背 景を,「アジアへの関心」と いう語句を使って、簡単に書きなさい。 [] P-212 (4) 第一次世界大戦中の日本について、 次の問いに答えなさい。 ① 好景気でにわかに大金持ちになった人たちを何といいますか。 [2] ② 三井・三菱・住友などの大企業はのちに何とよばれましたか。 2 パンと平和、民主主義を求めて (1) 右の写真はある国で起こったデモの 様子です。 ①1 デモの後、ソビエト政府が 樹立された革命を何といいますか。 2 革命を主に指導した人物はだれですか。 (2) 当初は中立だったが、1917年に第一 次世界大戦に参戦した国を書きなさい。 (3) ドイツ 201 15 10 H 1910 中国政府は、ドイツが 山東省にもっている一切の 権益を日本にゆずる。 1918年に連合国側がロシア各地に軍隊を送り、日本も シベリア出兵を行った理由を、簡単に書きなさい。 □ P-215 B 資料の活用 (1) 右のグラフ中のXの期間に、 日本は好景気となりました。 この好景気を何といいますか。 Xの期間に好景気 (2) になった理由を、「輸入」「輪 出」という語句を使って簡単 に書きなさい。 P213 オーストリア 大戦前後の貿易額の移り変わり X (2) wak 40 半島 (32) 1915年時点での欧米 ミカタ 列強の状態に着目しよう。 を大幅に上回ったから。( )に入る内容を考えよう。 記 (3) 「労働運動」「響」と ミカタいう語句を使って書いてみ

未解決 回答数: 1
数学 中学生

この問題を教えて欲しいです。

13 チャレンジ! 応用問題 1 資料の活用) 右の表は30人が所属しているスポーツクラブで、全員に実施したハンドボー ル投げの記録を度数分布表に整理したものである。記録はすべて整数値であり. 30人の記録の平均値は 20.5m であった。 ただし, 平均値は四捨五入などはされ ていない。 次の(1)~(3)の問いに答えなさい。 (1) 最頻値 (モード)は何mか。 (2) 15m以上20m 未満の階級の相対度数を求めよ。 表 (3) このクラブに新しく5人が入り, ハンドボール投げを実施したところ, 記録 は下のようになった。 この5人の記録を表に加えて整理した。 次の①②の間 いに答えよ。 新しく入った5人の記録 (m) 20 19 11 14 27 ① このクラブに所属する35人の平均値は何mか。 ただし, 小数第2位を四 捨五入して答えること。 ② 下のア~オは,この5人の記録を表に加える前と加えた後を比較して述べ たものである。この中で適切でないものを1つ選び記号で答えよ。 また,そ の理由を根拠となる数値を用いて書け。 ア 範囲(レンジ)はどちらも同じである。 イ 中央値(メジアン) を含む階級の階級値はどちらも同じである。 ウ 最頻値 (モード) を含む階級の階級値はどちらも同じである。 エ 記録が20m以上の人数の割合はどちらも同じである。 才 15m以上20m 未満の階級の相対度数はどちらも同じである。 階級 (m) 以上 5~10 10~15 15~20 20 25 未満 (1) (2) 30~35 at (3) 25 30 度数 (人) 15625130 m 適切でないもの 理由

回答募集中 回答数: 0
数学 中学生

221ページの問二と問三二百二十二ページの問一あと223ページの問にと問三と問四二百二十四ページの問一と問225ページの問三と練習一と二と三を教えてください

の○ の A ( 111 ( ) 1 並ページの度数分布表について, 次の問いに答えなさい。 60点をとった生徒は, どの階級にはいるか。 12) 度数がもっとも大きい階殺はどれか。 (3) 点数が70点以上の生徒数を求めよ。 (4) 点数が 40点未満の生徒数を求めよ。 220 第8章 資料の活用 確率 問 1 資料の散らばりと代表値 221 資料の散らばりと代表値 英語と数学のテストの得点 ■ヒストグラム クラスの30人に「出席得点(点)出席得点(点)出席得点(点) ついて,英語と数番号英語数学番号英語数学番号英語数学 右の表は、ある 右のグラフは,前ページの () 度数分布表をもとに, 階級の 1! 幅を横の辺,度数を縦の辺と する長方形を順々にかいて, 度数の分布を表したものであ 63 81 27| 20 1D 47 92 30 95 88 75 18 65 棒グラフとヒストグラム 算数で学んだ棒グラフは、 横軸がとびとびの値であり。 資料の個数を表す職の辺と うしは離れている。 一方、ヒストグラムは、 横軸に階級の幅を辺とする 長方形をかくので, 度数を 表す観の辺どうしは接する。 34 22 学のテストの得点 12 45 53 23 35 30 13 80 53 89 15 33 94 を調べたものであ 22 3 9 24 25 30 41 10 15) 60 35 4 71 82 66 8 る。 52 57 7 6 57 89 この表からは、 生徒1人ひとりの 得点はわかるが、 ある生徒の教科の 得点がこの集団の 中でどのような位置にあるのか, また, 英語と数学を比べて集団全 体として、どのようなちがいがあるのか, などはわかりにくい。 そこで、ここでは, 目的に合わせた資料の整理のしかたについて 学ぶことにしよう。 16 26 26 54 6 35 26 75 27 55 る。 5 17 75 18 43 4 このようなグラフを ヒス 58 72 28 72 (8 48 20 3 36 80 19) 45 35 29 44 トグラム または, 柱状グラ 9 42 38 38 30 31 長方形の面積と度数 階級の度数が長方形の縦 の辺であることから, 長方 形の面積は,度数に比例す 10) 58 26 20 48 フという。 20 30 40 50 60 70 80 90 100 (点) る。 ■度数折れ線 ヒストグラムの全面積と度 数多角形の面積の関係 左の図で、斜線をひいた 2つの直角三角形は合同で あるから、その面積は等し い。同様に考えていくと、 ヒストグラムの全面積と。 度数多角形の面積は等しい ヒストグラムで, 1つ1つ (人) の長方形の上の辺の中点を, 11 度数の分布 順に線分で結ぶと, 右のよう 10 資料の散らばりのようすを示す値として, 資料にふくまれている 最大の値と最小の値との差を考えることがある。これを分布の範囲 範囲=最大の値ー最小の値 上の英語と数学の得点で, 資料の最大の値と最小の値, ま た,分布の範囲をそれぞれ求めなさい。 9 な折れ線グラフができる。 た 8 だし、両端では, 度数0の階 級があるものと考え, 線分を 7 6 ことがわかる。 5 という。 度数分布曲線 精級の幅を小さくしてい くと、度数折れ線は、しだ いになめらかな曲線に近づ いていく。このような血線 を度数分布曲線という。 度数分布曲報は、資料の 横軸までのばす。 4 3 このようなグラフを 度数 折れ線 という。また, 度数 2 度数を整理するとき、「正」 の字を書いて数えると,数 え落としがない。このほか 「Z」や「H」など, 5を ひとかたまりとする記号な どでもよい。 0L 折れ線と横軸とで囲まれた多 角形を 度数多角形 または, 度数分布多角形という。 20 30 40 50 60 70 80 90 100(点) ■度数分布表 右の表は,上の英語のテストの得点をもとに, 10 英語のテストの得点 度数 分布のちがいによって, い ろいろな型になるが、代表 的な型として、次のような ものがある。 点ずつの幅で区切って区間に分け, その区間には いる生徒の人数を調べてまとめたものである。 このように資料を整理するために用いる1つ1 つの区間を階級, 区間の幅を階級の幅, 階 級の中央の値を階級値, それぞれの階級にはい っている資料の個数を, その階級の 度数 という。 また,資料をいくつかの階級に分け, 階級ごと に度数を示して, 分布のようすをわかりやすくま とめた右の表を度数分布表 という。 はば 階級(点) (人) 以上 未満 右の表において、 階級→20点以上30点未満, …などの区間。 階級の幅→10点。 階級値→階級 20点以上30 1 20~30 前ページの数学のテストの得点の表について, 次の問いに 答えなさい。 (1) 10点以上から始め, 階級の幅を10点として, 度数分 布表をつくれ。 30 40 4 |右より かいきう 40 50 10 50 60 7 どすう 4 60~70 2 80 1 点未満の階級値は。 対称型 左より M字型 AM 20+30 70 -25(点) 2 80~90 1 度数→各階級の人数。 20点以上30点未満の階殺 では、度数は1(人) 90~100 30 計 12) (1)でつくった度数分布表をもとにして, ヒストグラム と度数折れ線に表せ。

未解決 回答数: 1
1/7