学年

教科

質問の種類

数学 中学生

解き方わからないので教えて欲しいです

ートテスト④ (2次関数)を以下の日程で行います。 全クラス 期末テスト後最初の授業 (2次方程式と一緒にやります) 追試 22日 (金) 放課後3-3 問題は以下の通りです。 2学期の成績は、 レポートテスト次第 3/4 1. 関数y=ax2 のグラフの特徴を2つあげなさい。 どの2つをかいてもよい。 (完答1点) 2.2次関数y=2x24x+3のグラフの書き方。 (1点×2) ※既習事項を生かしての穴埋めになっていますが、 グラフの書き方を調べておきましょう。 3.図の長方形ABCD は、 AB=4cm、AD=2cmであり、 辺AB, CDの中点をそれぞれE,Fとし、線分 E Fをひく。 2点P,Qは、同時にAを出発し、Pは毎秒1cmの速さで辺上をA→E→B→Cの順に動き、 Cで停止する。 Q は毎秒1cmの速さで辺や線分上をA→D→F→Eの順に動き、Eで停止する。 P, Qが出発してから秒後の三角形APQの面積をcmとして、その変化の様子を調べる。 次の問に 答えなさい。 ただし、3点A, P,Qが一直線上にあるとき、 = 0 とする。 (1点×4) (1)x=3のとき、 の値を求めなさい。 (2)≦x≦6のとき、y=0のとき、x=t である。tの値を 求めなさい。 (3) 4≦x≦tのとき の式で表しなさい。 (4)P,Q が出発してから停止するまでの、との関係を表す グラフを図にかきなさい。 D 1 E 1.3はについては、まったく同じ問題です!2は調べて準備しておきましょう。 4. 図のように、 △ABC と長方形 DEFGが並んでいます。 長方形を固定し、 点Cが点Fに重なる まで三角形が矢印方向に移動するとします。 三角形の動く速さを秒速1cm、 秒後の重なっている IC 部分の面積をcmとする。 このときの問題。 (1点×3) A 4cm ※(3) はこれ↓ -4cm C (E) 8cm- Acm (3) 問題の条件変更や付け加えを1つ考えて問題をつくりなさい。 また、 問題の意図や解答などを 文章や図で説明しなさい。 4は (3) はそのままです。 (1)~(2)は問題を予想しておきましょう。 L

回答募集中 回答数: 0
数学 中学生

(2)のイ教えて欲しいです🙏 なんでその計算をしているかが分かりません。

3 図1のように,縦20cm,横30cm,高さ20cmの直方体の形をした容器がある。容器には、 2つの給水管 A,Bがついており,それぞれ一定の割合で水を入れることができる。容器に水 が入っていない状態から給水管を開き、容器が満水になるまで水を入れていく。 給水を始めて からx秒後の容器の底面から水面までの高さをycmとするとき,それぞれの問いに答えな さい。 ただし、容器は水平に固定されており, 容器の厚さは考えないものとする。 図1 給水管 A 20 cm -30cm- 1 容器に水が入っていない状態から,給水管Aを開き、 毎秒 200cm²の割合で給水を始め, 6秒後までのxとyの関係をグラフに表したところ、図2のようになった。 給水を始めてか ら6秒後に給水管Aを開いたままで給水管Bを開いた。 給水管B を開いてから12秒後に水 面までの高さが14cmになったところで給水管Aを閉じ, 給水管Bだけで容器が満水になる まで給水を続けた。 次の問いに答えなさい。 Jha 給水管 B (1) x=3のときのyの値を求めなさい。 xの変域 (2) 表は, 給水を始めてから容器が満水になるまでのxとyの関係を式に表したものである。 アウにあてはまる数または式を, それぞれ書きなさい。 また,このときのxとyの関係を表すグラフを,図2にかき加えなさい。 表 図2 24(cm) 0≤x≤6 6 ≤x≤18 18 ≤x≤ イ '20cm y= y=x-4 y= It ア 20 16 12 8 4 O HE 6 12 18 24 30 (秒)

回答募集中 回答数: 0
1/7