学年

教科

質問の種類

数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

2 Sさんのクラスでは,先生が示した問題をみんなで考えた。 次の各問に答えよ。 [先生が示した問題] a b を正の数とする。 右の図1で, △ABCは,∠BAC=90°, AB=acm, AC=bcmの直角三角形である。 右の図2に示した四角形AEDCは, 図1において,辺BCをBの方向に延ばした 直線上にありBC=BDとなる点をDとし, 図1 図2 A B A B △ABCを頂点Bが点Dに一致するように平行移動させたとき, 頂点Aが移動した点をEとし,頂点Aと点E,点Dと点Eを それぞれ結んでできた台形である。 四角形AEDCの面積は, △ABCの面積の何倍か求めなさい。 〔問1] 次の |の中の「う」に当てはまる数字を答えよ。 [先生が示した問題]で,四角形AEDCの面積は, △ABCの面積の う 倍である。 Sさんのグループは, [先生が示した問題] をもとにして,次の問題を作った。 [Sさんのグループが作った問題] a, b, xを正の数とする。 E D 右の図3に示した四角形AGHCは,図1において, 辺ABをBの方向に延ばした直線上にある点をFとし, 図3 C △ABCを頂点Aが点Fに一致するように平行移動させたとき, 頂点Bが移動した点をG, 頂点Cが移動した点をHとし, 頂点Cと点H点Gと点Hをそれぞれ結んでできた台形である。 右の図4に示した四角形ABJKは,図1において 辺ACをCの方向に延ばした直線上にある点をIとし, △ABCを頂点Aが点Iに一致するように平行移動させたとき, 頂点Bが移動した点をJ, 頂点Cが移動した点をKとし, 頂点Bと点J,点Jと点Kをそれぞれ結んでできた台形である。 図3において, 線分AFの長さが辺ABの長さのx倍となる ときの四角形AGHCの面積と, 図4において,線分AIの 長さが辺ACの長さのx倍となるときの四角形ABJKの 面積が等しくなることを確かめてみよう。 A B F G 図 4 K I J C A B 〔問2〕 [Sさんのグループが作った問題] で, 四角形AGHCの面積と 四角形ABJKの面積を, それぞれα, b, x を用いた式で表し, 四角形AGHCの面積と四角形ABJKの面積が等しくなることを証明せよ。 -2-

回答募集中 回答数: 0
数学 中学生

3番教えて頂きたいです!

右の図1のように, 台形ABCDと長方形EFGH がある。 台形ABCD は, 1辺が8cmの正方形 ABID と, <CID=90°の直角二等辺三角形CDI に分けることができる。 また, AB=EF,BC=FG である。 右の図2のように, 台形ABCDと長方形EFGH を,4点B,C,F,Gがこの順に直線ℓ上にある ように置く。長方形EFGHを固定し,台形 ABCD を直線ℓにそって矢印の方向に毎秒2cm の速さで平行移動させ,点Cが点Gと重なった ときに停止させる。 ASTA JNetis B F IC 点Cが点Fと重なったときからx秒後の台形ABCDと長方形EFGHが重なった部分の面積を ycm² とする。 このとき,次の(1)~(3) に答えなさい。 ただし, 台形ABCDと長方形EFGHは同じ平面上にあり, #100101-20 直線lに対して同じ側にあるものとする。〈京都〉 (1)x=3のときのyの値を求めなさい。 また,x=5のときのyの値を求めなさい。 (各5点) ABCDの映像 図1 A (ア)xに比例する 13 (ウ)xに比例しないが,xの一次関数である A(オ)の関数ではない B 図2 A D D E F E (イ)xに反比例する (エ)xの2乗に比例する H G H TOM (2) 次の文章は,xとyの関係について述べたものである。 文章中の ① ②に当てはまるも のを,下の(ア) ~ (オ) からそれぞれ1つずつ選びなさい。 (各5点) 0≦x≦4のとき,yは①。また,4≦x≦8のとき,yは② G () TESTEJA >$2001 - * (A) の点 AP 垂直な直線が、辺ABま をQ、辺BCまたはCDと (3)の値が2から3まで増加するときのyの増加量の6倍が,xの値が3から4まで増加するときのy の増加量と等しくなる。このときのαの値を求めなさい。 (10点) 0x12のときは0とする

回答募集中 回答数: 0
数学 中学生

なぜ正三角形になると、合同になるのですか??!門3です

SP TR 3静香さんと達也さんは、学校周辺の上空を通過する飛行機を見て、その位置につい て調べることにし、学校のある地点から観測した。観測において、 飛行機の位置を 位角と見上げた角度で表して考えることにした。 A 方位角は,北を 0° として, 時計回りに車を90° 南を 180°, 西を 270° と定めた 水平面での角度であり、例えば, 北東の位置の方位角は45°である。 見上げた角度は飛行機を見上げたときの角度と し、例えば、視線の方向と水平面に平行な面でで きる角度が50° のとき, 見上げた角度は50° で あるとする (図1)。 以下の会話文を読んで、 次の問1~問3に答え なさい。 ただし、観測をしている間は 飛行機は 一定の速さで一直線上に進み, 高度は変わらない ものとする。 また, 目の高さは考えず、 高度は水 面からの高さとする。 50° ☆ 視線の方向 見上げた角度 <水平面 図1 LAC 也さん 「方位角 120° の地点 A の上空を飛行機が飛んでいるとき, 見上げた角度は 30° だった。 その後, 方位角 90 の地点Bの上空を飛行機が飛んでいるときは, 見上げた角度は 45° だったよ。」 さん 「学校の地点を0として上空から見た図をつくると図2のようになるね。 飛 行機の進行方向の方位角は、図2の直線を点を通るように平行移動したと きの進行方向の位置の方位角になるから,この ∠xの大きさを求めればわか るんじゃないかな。」 ん 「じゃあ、まず飛行機の高度をん (m) としよう。 飛行機が通過する地点A, B の上空をそれぞれP, Qとすると図3のようになるね。」 「AOAP, AOBQは直角三角形だから,OB=h(m), OA= だね。」 「図4のように, A から南北の直線に垂線をひいてその交点を H, BからHA に垂線をひいて HAとの交点をLとしよう。 すると, HA=イ h (m) なるね。 これで, xの大きさが求められそうだ。」 は7000(m):7(km)を30秒)で移動するので 7x2x60=840(km) ア ん (m) 24 問 2 120° 学校 ・飛行機の 進行方向 B 東 130* 45° Q h (m) h (m) TB 図3 OHAにおって HA・OA sh 西 南 図2 WH-R 会話文中の空欄ア, イにあてはまる数をそれぞれ答えなさい。 OA= √3 AP= √3h 120% 学校 HP ・飛行機の 進行方向 東 よって、回ろより TW 図4 H ∠xの大きさと飛行機の進行方向の方位角をそれぞれ求めなさい。 図4におって BL=OHO 1/180A= √3h 30% PQ=AB=&LA=2(HA-OB)・んであるから 左ページへ こみ 直角三角形になるから LAHA-OB = hh = th よって、方位角は 2 A BLA BL: LA = √5:10 360°-30°= 330% 問3 方位角30°の地点Cの上空を飛行機が飛んでいるとき、見上げた角度を求めな さい。また、飛行機がPからQまで移動するときの時間が30秒、 高度が7000m であるときの飛行機の速度は時速何km か求めなさい。 求める過程も書きなさ ・北 い。 地点Cの上空をRとする △OBCは正三角形になるので AOBQEAOCRになる。 見上げた角度は 450 3点 LAB60° 2点 0 H 2480 C (R) ん A

回答募集中 回答数: 0
1/7