学年

教科

質問の種類

数学 中学生

209 (3)について、I行目は理解できるのですが、2行目以降がわかりません

★★☆☆ 組合せは何 場合 例題 209 整数解の個数 次の条件を満たす整数の組 (x, y, z) は何組あるか。 (1)x+y+z= 7, x ≧ 0, y ≧0, z≧0 (2)x+y+z= 7, x ≧ 1, y≧1, z≧1 01★★ ★★★☆ 6 章 15 順列と組合せ → a, a, b, c ◆a, a, a,c → b, b, b, b す の =2 (個) 必要 思考プロセス (3)x+y+z≦ 7, x ≧ 0, y ≧0, z≧0 既知の問題に帰着 (1)7を3つの整数x,y,zに割り振る。 ⇒ 7個のものを3種類に分ける。 ⇒7個のを2個の(区切り)で分ける。 (例題 208 に帰着) (1)・・ ...x, y, z はすべて 1以上 ⇒先にx, y, zに1つずつ0を割り振ってしまい, 残り4つの ○ の x,y,zへの割り振りを考えればよい。 対応 (3) 不等式の場合には、001000121わない 右のように対応させる。 001000010 y 対応 (x,y,z) = (2,4,1) ↓↓ (x, y, zに xyz割り振る (x,y,z)=(2,3,1) Action» 係数が等しい不定方程式の整数解の個数は、重複組合せで考えよ A (1) 求める組の総数は7個の○と2個のの順列の総数 に等しいから 9! 7!2! =36 (組) を合わせた ■場所から を選ぶと 15(通り) (2)求める組の総数は, 7個の○と2個のに対して, まず,3個の○を1個ずつx, y, zの値に割り振ると考 えると,残り4個の○と2個のの順列の総数に等しい =15 (組) から 6! 4!2! nHr (別解 合わ 50 含 つの箱だけに入 求める組の総数は7個の○に対して,間の6か所か ら2か所選んでを入れる入れ方の総数に等しいから 62 = 15 (組) (3)求める組の総数は7個の○と3個のを1列に並べ 1つ目のより左側の○の個数をxの値, 1つ目のと2つ目のの間の○の個数をyの値, 2つ目のと3つ目のの間の○の個数を2の値 とすると考えて 10! = =120 (組) 7!3! 209 次の条件を満たす整数の組 (x, y, z) は何組あるか。 (別解 x, y, zの3種類のもの から重複を許して7個と る組合せの数であるから 3H7=3+7-1C7=9C7=9C2 36(組) ○|○○○」のとき x=1+1=2 y=3+ 1 = 4 z=0+1=1 2個ので区切られた3 つの部分には少なくとも 1個の○が含まれる。 7-(x+y+z)=u とおくと x+y+z+u=7 x≥0, y ≥0, z≥0, u≥0 を満たす整数の組の個数 を求める問題となる。 は何 208 (1)x+y+z=8,x≧0, y≧0, z≧ 0 (2)x+y+z=9,x≧1, y ≧1, z≧1 (3)x+y+z=10,x≧0y0z≧0 381 p.391 問題209

未解決 回答数: 1
数学 中学生

二次関数の問題です。 分かりません。

-3,9/ AK y=x² CU P y B(2, と直線y=x+4の交点を右の図のようにA,Bとし、 放物線 点Cを四角形OACB が平行四辺形になるようにとる。 このとき, 次の問い 点A(4,8)、点B(-2,²) に答えなさい。 DJ ニーズナ8ソ=2+4にスニート、スニ入すると、 2+4y=4+4 und A y=2 √2=X² = x+|x==1₁ 点の座標を求めなさい。 上の座標4-2=2 Y座標 5+2=10 *(4,8) Y-REAL-1₁9) ソニメに入を代入すると 点((2,10) ( (2,10) (3) x軸上の点P(2.0) を通り, 平行四辺形OACBの面積を2等分する直 線の式を求めなさい。 ] B (-2,2) X77X16 Y = 5A(-4,5) Y = 2 (y=-Sat 10 5 右の図のように放物線y=x上にx座標が - 3,2である点A,Bを とり、直線ABとx軸の交点をCとする。このとき、次の問いに答えなさい!ス+b (1) 点Cの座標を求めなさい。 = 2TR ²1"-LY=0 Sy=-2+b Y = -2161=X=6 を代入すると メスに代入すると直線AB を Yutbとおき、点A ソニー46(-3,1 B(2,4)を代入すると、 よって点((60) == Lath 42² ) 連立方程解くと 10 3 (6,0)) X=4&B (2,4) (2) AOACをx軸を軸として1回転させてできる立体の体積を求めなさい。 〕 y=-x+b y=-x+6YY=0 X1XD [ 162t 113) A 7 (3) △OAB をx軸を軸として1回転させてできる立体の体積を求めなさい。 (130大 (2,2) BX y=16x 16 右の図のように,放物線y= -2 上に座標がそれぞれ -4.4.2で ある点A, B, C をとる。 このとき、 次の問いに答えなさい。 (1) 直線AB上に点Dをとって, △OADの面積が四角形OABCの面積と 等しくなるようにするとき, 点Dの座標を求めなさい。 ただし, 点Dの 座標は正とする。 ソニーズにスニーチ、ス=チ、スーすると、 == (4.1) y=x+4 [ (5,8) 〕 A·C(8.²) (2) 点Oを通り、四角形OABCの面積を2等分する直線の式を求めなさい。 ] 2 JESJETA, y O 20 (-4,5) A A(4,8) -4 y=x² <B(2,4) 2 y 0 B(4,8) (C(2₂2) 2 4 I 1 2乗に比例する関数と図形の応用 99

未解決 回答数: 1
1/5