学年

教科

質問の種類

数学 中学生

この問題があっているか見てほしいです! ご回答よろしくお願いします!

☆定義や求め方をしっかり復習 No.1 yはxの1次関数であるとき、どのような式で表すことができるか答えよう。 y=ax+b No.2 変化の割合の定義を答えよう。 また、 No.1 で答えた式のどの部分に相当するか答えよう。 そが1増加したときの、yの増加量 No.3 次のア~エについて、yをxの式で表してみよう。 (y=の形) また、yはxの1次関数となっているものすべてに○をつけよう。 22×4 ア 1辺が2xcmである正方形の周の長さycm y=82 2 30kmの道のりを時速3kmでx時間歩いたときの残りの道のりykm y=-3x+30 a 2cx yx2 = 1 xy=1 y= xxx/2/2 2 ウ面積が16cm2である三角形の底辺の長さxcmと高さycm 32 32 = 16 =16: y= x エ 縦が5cm横が3xcmの長方形の面積ycm² 35×32 y=15x y=152 No.4 下の表は、線香に火をつけてから、x分後の長さをycmと表したときの表です。 このときの、変化の割合を答えよう。 + 3 x(5) 0 y (cm) 12 9 5 10 15 643 20 5 0 3 5 (5, J のぞ そのぞ No.5 No.4の表で線香の長さが4cmになるのは、線香に火をつけてから何分後か答えよう。 5 - ½-½ 2+12=4-12, 48分後 x=-8÷1 -8×5 t (0, 12) CD, 4) -8 24 5 D D 8 No.6 反比例y=12について下の表を埋め、変化の割合について分かることを書いてみよう。 x -3 -2 -1 0 1 2 3 -4-6-1201264 124 y 反比例の変化の割合は一定ではない。 726 12 8

解決済み 回答数: 1
1/40