学年

教科

質問の種類

数学 中学生

この問題の解き方を教えてほしいです。(1)①までしか解けませんでした。(1)はできるようにしたいです🥲

F E P Q 応用問題 動く点と立体の体積 関数y=ax' と一次関数 (福井) 図のように, AB=5cm, AD=3cm, AE=4cmの直方体がある。 点Pは,点Aを出発して, 対角線 AH, 辺 HG, GF, FE, EA上をA→H →G→F→E→Aの順に毎秒2cmの速さで動き, 頂点に達したところで停止する。 点Qは,頂点Aを出発して, 辺AB, BC上を, A→B→C→B の順に毎秒1cm の速さで動き, 点Pが停止すると同時に停止する。 2点P, Qが同時に頂点Aを 出発し, 出発してから秒後の三角錐 PDAQの体積をycmとする。 ただし, x=0 のとき,y=0 とする。 H B 52 このとき、 次の問いに答えよ。 D (1) 点Pが対角線 AH 上にあるとき, ① xの変域を求めよ。 AD=3, DH=4で, ∠ADH=90° だから, 三平方の定理より, AH = √4°+32=√25=5(cm) ① 0≤x≤ 点Pは毎秒2cmで進むから, AH間は 5 2 秒で通過する。 16 ② x=2のときのyの値を求めよ。 (1) ② y= 1 X3X2X 3 16 16 5 5 AP=4 AQ=2 点Pの辺AD からの高さは, 4× ③uをェの式で表せ。△DAQ を底面とすると,高さは 1/2×2=1/31 x2x= 4 16 5 - (cm) 5 5 45 ③y= 2 IC 5 y=- × 3 2 8 -XC= xの変域 5 -≤x≤5 (2)点PがHG 上にあるとき, xの変域を求めよ。 また, そのときのyをxの 式で表せ。 AG 間は10cmだから, 点Pは5秒後にGに達する。 (2) 2 2015 y= 2x 01の高さは,DH=4 よって,y=1/X/X (3)5x9のとき、xの値に関係なく, yの値は一定になることを言葉や数、 式などを使って説明せよ。 このとき,点Qは辺AB上にあり, ADAQを底面とする三角錐 PDAQ 11 -x-x3xxx×4=2x (4) √5. 51 秒後 5 (1) ① (説明) (例) 三角錐 PDAQ の底面を△DAQ とみると, 点P は辺 GF, 辺FE上を動くので、三角錐の高さは 4(cm) で一定である。 また, 点 Qは辺BC 上を動くので、 △ADH は辺の比が 3:45 直角三角形。 A② 1 底面の面積は 2 15 2 ×3×5= -(cm²) で一定である。 した PからADに垂線PI をひくと, PI: HD = AP: AH PI:4=4:5 より, PI=- -(cm) 16 5 っては1/2× 15 2 -×4=10(cm)で一定である。 S HA (4) 点Pが辺HG 上にある とき, 2x=4 より x=2 このとき、12x5だか 5 (4)三角錐 PDAQの体積が4cmとなるのは何秒後か, すべて求めよ。 点Pが辺 AH 上にあるとき 1/3x=4=5x≧0より,x=15 点Pが辺EA 上にあるとき, 9≦x≦11で, 点Qは辺BC上にある。 1 1 このとき, y=-x = ×3×5×(22-2x)=-5x+55 2 51 -5x+55=4より, 5x = 51 x=- 5 ら、問題に合わない。 点Pが,辺 GF,辺FE 上にあるとき,(3)より, y=10で,問題に合わな い。

解決済み 回答数: 1
数学 中学生

それぞれの大問の➀の解説がほしいです。 ほかの問題もわからないですけど、➀で基礎をおさえたいです💪

Point 4 直線上の点の座標 例題図のように、2つの直線 がある。上に点A,上に点B,C, 上に点を四角形ABCD が正方形となるようにとるとき、点 Aの座標を求めなさい。 11-2r LE 人 解き方 点の座標を文字でおき, B~Dの座標を文字で表すことによ 1辺の長さについての関係式から求める。 A D (i) 点の座標をとすると,Aは直線2r上の点であるから、 座標は2rにαを代入して20. よって、 AB=24 B C m: y=-x+15 点Dの座標はAの座標と等しいので24座標は点Dが直線y=-x+15 上の点であ ることから、y=-x+15にμ=20 を代入して、2ax+15より,z=15-2 (iii) ()より、AD=15-2a-a=15-34, 四角形ABCD が正方形であることから, AB=AD であるから, 2015-34より, a=3. よって, A の座標は3. 座標は2×3=6 問題 4 次の問いに答えなさい。 □(1) 次の図で点Aの座標をαとするとき 座標をαで表しなさい。 ① A (a) ② Y 4 I I [5 6 0 ③ !! A 4)( (2)次の図 点A, B の座標がともにαであるとき 線分ABの長さをαで表しなさい。 ① y 0 B y=x+3 y=-x+3 ② ③ y=x JA y= x+4 IB 10 y 答 (36) 57 A ((24) IB I -20 ■(3) 次の図で、 四角形ABCD が正方形であるとき, 点Aの座標を求めなさい。 ① y y=2x+1 A D ② y □③ !! IC x+3 (3, 6) S A D JA DAR I OB 0 B C C B C 5 y=-x+4 y=x+1 11 直線の式 87

解決済み 回答数: 1
数学 中学生

こういう系の問題苦手なので、 ガチでわかるようになりたいです。 詳しく解説していただけると幸いです

3AからBまでを分速60mの速さで行くと, 待ち合わせの時間より8分遅れるので, 分速 80mの速さで行 たところ4分早く着いた。このとき,次の問いに答えなさい。 <2016 常翔学園 □(1) AからBまでの道のりをcmとする。 分速60mの速さで行ったとき, かかる時間をェを用いて表 なさい。 □(2) AからBまでの道のりは何m ですか。 ★★4 大きな池の周りに環状の道がある。この道をあゆみさんは徒歩で分速60mの速さで,かけるさんは自転車で 分速 180mの速さで進む。 ただし, 2人とも一定の速さで進むものとする。 A地点からあゆみさんとかけるさん が同時に出発し, あゆみさんは反時計回りに, かけるさんは時計回りに進んだところ, 2人はC地点で初めて出会っ た。また,B地点からあゆみさんとかけるさんが同時に出発し, あゆみさんは時計回りに、かけるさんは反時計 回りに進んだところ, 2人はD地点で初めて出会った。 B地点はA地点から時計回りに140m進んだところに あり,D地点はC地点から反時計回りに520m進んだところにある。 このとき,次の問い (1)~(3)に答えなさい。 (1)この環状の道は1周何mですか。 1800> <2015 京都市立堀川高〉 □(2) あゆみさんがB地点から,かけるさんがA地点から同時に出発して2人とも時計回りに進むとき, かけるさんが出発してから2回目にあゆみさんを追い越すのは何分何秒後ですか。 500円になる。 □(3) あゆみさんがB地点から, かけるさんがA地点から同時に出発し, あゆみさんは時計回りにかけ さんは反時計回りに進むとき, 出発してから2回目に2人が出会うのは何分何秒後ですか。

解決済み 回答数: 1
1/9