学年

教科

質問の種類

数学 中学生

この問題私立の過去問の大問2️⃣の(5)です。 こういう問題は捨てていいと思いますか? 似たような問題やっても全然できませんでした。

ってきたんだか あとか (5)下の図のように、黒い正三角形を積み上げていく。 次の会話を読んで ア イにあてはまる式の組み合わせとして正しいものを選びな さい。 1番目 2番目 3番目 1-2421- 628200 Aさん:黒い正三角形を、1番目の図形は1個, 2番目の図形は3個、3番目の図形は6個使って いるね。 Bさん 2番目の図形の黒い正三角形の個数は, 1+23 (個) 3 図のように、箱には,1,2,3,4,5の数字が1つずつ書か 910の数字が1つずつ書かれた玉が5個入っている。 箱 A. Bから1個ずつ ら取り出した玉に書かれた数を4. 箱Bから取り出した玉に書かれた数をb 箱A 問いのアークにあてはまる数字をマークしなさい。 箱B 2 3番目の図形の黒い正三角形の個数は, 1+2+3=6 (個) だね。 Aさん ということは,n番目の図形の黒い正三角形の個数は、1からnまでの整数の和になるね。 at O Bさん 1+2+3+…+n (個) になるけどもっと簡単に表せないかな? (1) a+b=10 になる確率は, ア イウ である。 & Aさん:次のように、1からnまでの整数の和を2つたし合わせると, 001 0 (2) √ab が整数となる確率は, エ オカ である。 イ 個と表せるね。 1 + 2 + 3 + … + (n-1) + n 土) n +(n-1)+(n-2 +... + 2 + 1 Hom になって, (n+1) が ア 個現れるよ。 (n+1) + (n+1)+(n+1) +... +(n+1) +(n+1) Bさん これを利用すると, n番目の図形の黒い正三角形の個数は, (2) ア:n+1 イ: (n+1)2 11 ①アin イ: n(n+1) ③7:n イ: n(n+1) 2 (5) 7:n イ: n(n+1)2 2 ④:n+1 (n+1)2 イ: (3)座標平面上において,y=ax+b と y=bx の交点のx座標- 10

回答募集中 回答数: 0
数学 中学生

(2)のiii)を詳しく教えてください! 答えは④8 ⑤5 ⑥5です お願いします🙇‍♀️

①) ACDF △EHFであることを次のように証明した。 句を,後の【語群】 ア〜ケからそれぞれ一つずつ選び、その記号をマークせよ。 [証明] △CDFと△EHFにおいて 仮定から <CDF = 4① =90°. 平行四辺形 CDEFの向かい合う角の大きさは等しいから 4② = <FEH Ⅰ Ⅱより, ③がそれぞれ等しいから ACDFAEHF 【語群】 ア CFD オ EHF キ 3組の辺の比 イ DFH カ EFH ウ FCD I FHD ク 2組の辺の比とその間の角 図 4 C ii) ADFHの面積として正しいものを,次のア~エから一つ選び, その記号をマークせよ。 ア 10√5cm² イ 20cm² ウ 25cm² エ 40cm² U II D にあてはまる記号や語 ii) 平行四辺形の紙を2枚ずらして重ねて,それを 巻いて芯をつくることで、芯の強度を上げること ができる。 図4の平行四辺形 CD'E'Fは、図3の平行四 辺形 CDEF と, 平行四辺形CDEF と合同な平 行四辺形 C' D'E'F' とを CC' =3cm となるよう にずらして重ねてつくったものである。 この平行 四辺形 CD'E'Fを、 辺CFと辺D'E' がそれぞ れ芯の口の円周となるように巻いて、芯の口の円 周の長さが辺CFの長さに等しい円筒をつくり、 この円筒をQとする。 円筒Pに底面をつけてできる円柱形の立体を, その内部が空洞でないと考えて円柱とみなし, 円 柱P'とする。 同様に、円筒Qに底面をつけてできる円柱形の立体を円柱とみなし, これを円柱Q' とする。このとき,円柱Q'の体積は円柱P′ の体積の ⑥にあてはまる数字をそれぞれマークせよ。 ケ 2組の角 倍になる。 F E E'

回答募集中 回答数: 0
数学 中学生

(2)のiii)がわからないので詳しく教えてください! 答えは④8 ⑤5 ⑥5です よろしくお願いします🙇‍♀️

i) ACDF △EHFであることを次のように証明した。 ①~③ にあてはまる記号や語 句を,後の【語群】 ア〜ケからそれぞれ一つずつ選び、その記号をマークせよ。 [証明] △CDFと△EHFにおいて 仮定から ∠CDF = < ① = 90° 平行四辺形 CDEF の向かい合う角の大きさは等しいから ② =∠FEH ③ がそれぞれ等しいから ACDFAEHF Ⅰ Ⅱより、 【語群】 アオキ ア CFD EHF イ DFH カ EFH キ 3組の辺の比 ウ FCD エFHD 2組の辺の比とその間の角ケ 2組の角 ク ・・・I ii) △DFHの面積として正しいものを,次のア~エから一つ選び, その記号をマークせよ。 ア 105cm² イ 20cm ² ウ25cm² I 40cm² ii) 平行四辺形の紙を2枚ずらして重ねて, それを 巻いて芯をつくることで、芯の強度を上げること ができる。 図4の平行四辺形 CD'E'Fは、図3の平行四 辺形 CDEF と, 平行四辺形 CDEF と合同な平 行四辺形 C' D'E'F'とをCC' =3cmとなるよう にずらして重ねてつくったものである。 この平行 四辺形 C D'E'Fを、 辺CFと辺D'E' がそれぞ れ芯の口の円周となるように巻いて, 芯の口の円 周の長さが辺CFの長さに等しい円筒をつくり, この円筒をQとする。 円筒Pに底面をつけてできる円柱形の立体を, その内部が空洞でないと考えて円柱とみなし, 円 柱P'とする。 同様に, 円筒Qに底面をつけてできる円柱形の立体を円柱とみなし, これを円柱Q′ とする。このとき,円柱Q′の体積は円柱P′ の体積の 図4 C C D • II D ⑥ にあてはまる数字をそれぞれマークせよ。 倍になる。 F F E E

回答募集中 回答数: 0
1/5