学年

教科

質問の種類

数学 中学生

(4)の解き方を詳しくお願いします。 答えは、9分36秒後になります。

【問3】 光さんと妹の愛さんは、 毎週土曜日、家からの道のりが1800mのところにあるピアノ教室 に歩いて通っている。 ある日、光さんは、午前10時40分からのレッスンに間に合うように, 午前10時に家を出発した。 各問いに答えなさい。 I 光さんは,家を出発して一定の速さで8分間歩いたところで忘れ物をしたことに気がつき, それ までの2倍の速さで歩いて家にもどった。 家に着いてから2分後に再び家を出発して一定の速さ で歩き レッスン開始予定時刻の2分前にピアノ教室に到着した。 図1は, 光さんが,午前10時 に家を出発してからx分後の 家から光さんまでの距離をym として, 0≦x≦8のときのxとy の関係をグラフに表したものである。 ただし, 忘れ物をとりに家にもどった以外, 途中で寄り道な どはせず,まっすぐピアノ教室に向かって進んだものとする。 図 1 y 1800- 1600- 1400 1200 1000- 800 600 +400 thes 114a+b=0 -38076=1800 14a+b=0 -38a+b=0 -24a=-1800 -24a=0 a=75 14a+b=0 7.5 380746=0 24 1800 1628 120 120 4=500 200 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 X (1410) (20.0) (38,1800) 100 -240=0 a=0 b=0 75 14 300 ☆ 75 1050 (1)午前10時に家を出発してから忘れ物をしたことに気がつくまでの、光さんの歩く速さは,分 速何m か 求めなさい。 2002-40830 y= -×-20 63(2) 光さんがピアノ教室に到着するまでのグラフを完成させなさい。 1050+6=0 b=-101 1 23 136 18 (25) 2950 1250 6 4500 (3)光さんが、 再び家を出発してからピアノ教室に到着するまでの, xとyの関係を式に表しなさ 7/30 (1) =233 12 23.6×60 118 5 118 23分36秒 5CX 6012 118 5590 590 5) 3,50 45 40 450 (4) 光さんは,再び家を出発してからしばらくして, 光さんが進む道と同じ道を通って自転車で 図書館に向かう兄の健さんに追い越された。 健さんが家を出発したのが午前10時20分, 自転車 の速さが分速 200mで一定であるものとすると, 光さんが健さんに追い越されたのは,光さん が再び家を出発してから何分何秒後か求めなさい。 y=200xtb tb 394 4000 1050 2950 400 y=200-4000 1-1050+4000

回答募集中 回答数: 0
数学 中学生

(3)がわかりません。至急なのでどなたかお願いします!💦 模範解答は納得はできたんですが、△AQPの面積求めて…ってやってはできないんですか?

6 右の図のように、三角錐 ABCDが あり,AB=2√7cm, 6 (1) BC=BD=6cm,CD=2cm, ∠ABC=∠ABD=90°です。 点Pは B 頂点Aを出発し, 辺AC上を毎秒 D 面積 (2) 1cmの速さで頂点Aから頂点Cま で移動します。 体積 cm³ 8秒 √35cm2 14/5 32点(各8点) 3 (京都府) 48 □(1) 点Pが頂点Aを出発してから頂点Cに到着するま (3) 秒後 7 でにかかる時間は何秒か求めなさい。 AC2=(2√7)2+62=64 AC=8cm 毎秒1cmの速さで進むから, 8秒かかる。 □(2) △BCDの面積を求めなさい。 また, 三角錐 ABCD の体積を求めなさい。 三角錐 ABCDの体積は, -x√35 ×2√7= 右の図で,BH2 = 62-12=35 BH=/35cm ABCD=122×2 -14/5 (cm3) =122×2×√35=√35(cm²) 6 6 3 (3)Qは,頂点Aを点Pと同時に出発し,辺AB上 を頂点Bに向かって, BC//QPが成り立つように進 みます。 三角錐 AQPDの体積が 24√5 7 cm3となるの は,PがAを出発してから何秒後か求めなさい。 三角錐 ABCD と三角錐AQPD は, それぞれ底面を△ABC, AQP とみると 高さは等しいから、体積の比は,△ABCと△AQP の面積の比に等しい。 (三角錐 ABCD の体積):(三角錐 AQPDの体積)=145:24,5 -=49:36 だから,Q △ABC: △AQP=49:36 ....① また,BC//QPから△ABC∽△AQPで,その相似比は①から,7:6 よって, AC: AP= 7:6 8:AP = 7:6 7AP=48 CTHD B 6 AP = 48 cm よって、48秒後

未解決 回答数: 2
数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0