学年

教科

質問の種類

数学 中学生

2を教えてください!

■平成20年度問題 3 ある地震を2つの地点A, Bで観測した。 下の表は、地点A, B におけるP波の 到着時刻と震源からの距離を表したものである。 次の(1), (2) の問いに答えなさい。 ただし, P波とS波はそれぞれ一定の速さで伝わるものとする。 <一表 20秒 地点 A 地点B 0 P波の到着時刻 震源からの距離 13時20分34秒 60km 13時20分54秒 180km (1) 次の①~③の問いに答えなさい。 1200m ① 下の図に, 地点 A, B における観測値を●ではっきりと記入し, それをもと にP波の到着時刻と震源からの距離との関係を表すグラフをかきなさい。 ②地震の発生時刻を推定すると,何時何分何秒になるか。 次のア~オの中から 最も適当なものを1つ選びなさい。 ア 13時20分16秒 エ 13時20分28秒 イ 13時20分20秒 オ 13時20分32秒 ウ 13時20分24秒 及 震源からの距離が100kmの地点には, S波が13時20分56秒に到着した。 下の 図の①と同じ欄に、この地点における観測値をXではっきりと記入し、それを もとにS波の到着時刻と震源からの距離との関係を表すグラフをかきなさい。 (1) km 震源からの距離[m] 地震の波の到着時刻と震源からの距離 200 150 100 50 0 13時20分 30秒 20秒 40秒 50秒 13時21分 10秒 時刻 20秒 30秒 00秒 (2) 震源からの距離が90kmの地点にP波が到着した時刻に、地震の発生を知らせるテレ ビ放送が始まった。 このテレビ放送が始まってから33秒後にS波が到着したのは、 源からの距離が何kmの地点か。 次のア~オの中から最も適当なものを1つ選びなさい。 ア 110km イ 130km ウ150km I 170km オ190km (2)

回答募集中 回答数: 0
数学 中学生

難しいかもしれませんが この問題の解き方を教えてください🙇🏻‍♀️

り 2 公 B,Cがあり,x座標はそれぞれ- 2, 1,3である。 直線ACとy軸との交点を点Dとし, 線分CD上に2点 C, D また、xの変域が−2≦x≦1のとき,yの変域は0≦x≦2で ある。 ......① 太郎さんと花子さんは次の問題について話している。 次の各問いに答えよ。 問題 2Ⅱ) 人外学高学賃 図のように、関数y=ax(aは定数)のグラフ上に3点A. D A €22 とは異なる点Pをとる。 四角形POBCの面積が3となるときの点Pの座標を求めよ。 -20 1 高 花子: 問題の下線部 ①から,点Aのy座標が分かるね。 太郎:そうだね。 点Aの座標が分かればα=アとなるよ。 次に,点Bと点C の座標も求めておこう。 うーん、四角形POBCの面積を直接求めるのは難しそうだなあ・・・ 花子:まず四角形DOBCの面積を求めてみるのはどうだろう。それなら,3点 A,B,Cの座標からAC/ OBとなるから、求めやすいんじゃないかな。 太郎:そうか! 四角形DOBCの面積はイだから,そこから四角形POBCの 面積が3となるような点Pの座標を見つければ良いね! (1) 会話文のア, イに入る数を答えよ。 (2)点Pの座標を求めよ。 (8-x) 自 80% SW 8 3 大小2つのさいころを投げたとき, 大きいさいころの出た目をα, 小さいさいころの出た bとし,直線y=x-bを考える。 この直線とx軸,y軸の交点をそれぞれA,Bとし,原点を0とするとき、次の確率を求めよ。 (1) 直線の傾きが1以下になる確率 (2) OABが直角二等辺三角形になる確率 (3)点Aのx座標が整数になる確率 DEAREA&&58=0A = 4 図のように, AB=AE=1, AD=2の直方体 ABCDEFGHがある。 点Pが対角線AG上を動く とき、次の問いに答えよ。 (1) AP:PG=3:1のとき, 四角すいP-EFGHの体積を求めよ。 (2) CPの長さが最小になるときのCPの長さを求めよ。 (3)点Pが平面 CHF 上にあるときのCPの長さを求めよ。 (途中経過を図や式で示すこと) H A IB E F

回答募集中 回答数: 0
数学 中学生

この答えが 1番がY =20で、2番が 5秒後から9秒後まで なんですけど何でか教えてください

(3) 図のように、AB=6cm, AD=4cmの長方形ABCD と、 1週 が 8cmの正方形から1週が4cmの正方形を切り取った形の図形 EFGHIJ がある。 点B、C、F、Gは同じ直線上にあって、CDと EFは重なっている。 図形 EFGHIJは固定したまま、長方形 ABCD を直線にそって、矢印の方向に、頂点Bが頂点Gに重なるま で、毎秒1cmの速さで移動させる。 図11は、移動の途中のようすを 示したものである。 H dem D dem 6cm E 4cm Sem B CF Semi- 図 H 長方形ABCDが移動を始めてからで秒後の、長方形ABCD と図 A D 形 EFGHI が重なった部分の面積を!cmとする。 E このとき、次の①、②の問いに答えなさい。 jem ただし、長方形ABCD が移動を始めるとき、および、頂点Bが頂 BFC G 点Gに重なったときは、y=0 とする。 図Ⅱ なお、下の図を必要に応じて使ってもよい。 ① z=6のときの”の値として正しいものを、次のアからオまでの中から一つ選びなさい。 ア y=20 1 y=22 ウy=24 I y=26 *y=28 ② 長方形ABCD と図形 EFGHIJ が重なった部分の面積が18cm以上になっているのは、 長方形 ABCL が移動を始めて何秒後から何秒後までか、次のアからオまでの中から一つ選びなさい。 ア 12/23秒後から 21/27秒後まで イ 9 2 一秒後から9秒後まで ウ 5秒後から1秒後まで 19 エ 5秒後から9秒後まで オ 5秒後から秒後まで

回答募集中 回答数: 0