学年

教科

質問の種類

数学 中学生

(3)の解き方教えてください!! 答えはA、B、D、E と C、D、E、F でした

5 図1のように, AB AC の鋭角三角形ABCがある。 図 1 次の(1)~(4) に答えよ。 B (1) 図1において, 点Aから辺BCへの 垂線を作図する。 図2は, 点Aを中心と して, △ABCと4点で交わるように 円をかき, その交点を,あ、い, うえと したものである。 C 図2 A 図2のあ〜えの点の中からどれか2点を P,Qとすることで,次の手順によって, 点Aから辺BCへの垂線を作図することが できる。 あ B い 手順 え C ① 点P,Qをそれぞれ中心として, 互いに交わるように等しい半径の円をかく。 2 ① でかいた2つの円の交点の1つをRとする。 ただし, 点Rは点Aとは 異なる点とする。 3 直線ARをひく。 このとき、点P,Qとする2点を、 図2のあ〜えから2つ選び, 記号をかけ。 また,手順によって, 点Aから辺BCへの垂線を作図することができるのは, 点Aと点P, 点Pと点R, 点Rと点Q, 点Qと点Aをそれぞれ結んでできる図形が, ある性質をもつ図形だからである。 その図形を次のア~エから1つ選び, 記号をかけ。 ア 直線ARを対称の軸とする線対称な図形 イ∠BACの二等分線を対称の軸とする線対称な図形 ウ点Aを対称の中心とする点対称な図形 エ点Rを対称の中心とする点対称な図形

回答募集中 回答数: 0
数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

[ 問7] 右の図1は ある中学校第2学年の, A組, B組, C組それぞれ生徒37人の 図 1 A組 ハンドボール投げの記録を箱ひげ図に 表したものである。 B組 図1から読み取れることとして 正しいものを 次のア~エのうちから 選び, 記号で答えよ。 C組 0 5 10 15 20 25 30 35 40 (m) ア A組, B組 C組のいずれの組にも, 記録が30mを上回った生徒がいる。 イ A組, B組, C組の中で, 最も遠くまで投げた生徒がいる組はC組である。 ウ A組, B組, C組のいずれの組にも, 記録が15mの生徒はいない。 エ A組, B組, C組の中で, 四分位範囲が最も小さいのはB組である。 〔8〕 次の 「の中の 「あ」 「い」 に当てはまる数字を 図2 それぞれ答えよ。 右の図2で点Oは, 線分ABを直径とする円の 中心であり, 3点C, D. Eは円0の周上にある点 である。 A B 5点A, B, C, D, E は, 右の図2のように, A, D, B, E. Cの順に並んでおり,互いに 一致しない。 点Bと点E 点Cと点D, 点Dと点Eをそれぞれ 結ぶ。 2 線分CDが円Oの直径, AC = ABのとき, xで示した∠BEDの大きさは, 5 あい 度である。 〔問9] 右の図3 で, 四角形ABCDは,∠BADが鈍角の 四角形である。 解答欄に示した図をもとにして, 四角形ABCDの 辺上にあり,辺ABと辺ADまでの距離が等しい 点Pを, 定規とコンパスを用いて作図によって求め、 点Pの位置を示す文字Pも書け。 図3 A ただし, 作図に用いた線は消さないでおくこと。 -1- B

回答募集中 回答数: 0