学年

教科

質問の種類

数学 中学生

(4)の解き方を詳しくお願いします。 答えは、9分36秒後になります。

【問3】 光さんと妹の愛さんは、 毎週土曜日、家からの道のりが1800mのところにあるピアノ教室 に歩いて通っている。 ある日、光さんは、午前10時40分からのレッスンに間に合うように, 午前10時に家を出発した。 各問いに答えなさい。 I 光さんは,家を出発して一定の速さで8分間歩いたところで忘れ物をしたことに気がつき, それ までの2倍の速さで歩いて家にもどった。 家に着いてから2分後に再び家を出発して一定の速さ で歩き レッスン開始予定時刻の2分前にピアノ教室に到着した。 図1は, 光さんが,午前10時 に家を出発してからx分後の 家から光さんまでの距離をym として, 0≦x≦8のときのxとy の関係をグラフに表したものである。 ただし, 忘れ物をとりに家にもどった以外, 途中で寄り道な どはせず,まっすぐピアノ教室に向かって進んだものとする。 図 1 y 1800- 1600- 1400 1200 1000- 800 600 +400 thes 114a+b=0 -38076=1800 14a+b=0 -38a+b=0 -24a=-1800 -24a=0 a=75 14a+b=0 7.5 380746=0 24 1800 1628 120 120 4=500 200 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 X (1410) (20.0) (38,1800) 100 -240=0 a=0 b=0 75 14 300 ☆ 75 1050 (1)午前10時に家を出発してから忘れ物をしたことに気がつくまでの、光さんの歩く速さは,分 速何m か 求めなさい。 2002-40830 y= -×-20 63(2) 光さんがピアノ教室に到着するまでのグラフを完成させなさい。 1050+6=0 b=-101 1 23 136 18 (25) 2950 1250 6 4500 (3)光さんが、 再び家を出発してからピアノ教室に到着するまでの, xとyの関係を式に表しなさ 7/30 (1) =233 12 23.6×60 118 5 118 23分36秒 5CX 6012 118 5590 590 5) 3,50 45 40 450 (4) 光さんは,再び家を出発してからしばらくして, 光さんが進む道と同じ道を通って自転車で 図書館に向かう兄の健さんに追い越された。 健さんが家を出発したのが午前10時20分, 自転車 の速さが分速 200mで一定であるものとすると, 光さんが健さんに追い越されたのは,光さん が再び家を出発してから何分何秒後か求めなさい。 y=200xtb tb 394 4000 1050 2950 400 y=200-4000 1-1050+4000

回答募集中 回答数: 0
数学 中学生

ここの問題問1以外全部わかりません。解き方と一緒に回答お願いします。

第四問下の図のように、1から18までの整数が表に書かれた 18枚のカードを並べます。 カー ドの裏には何も書かれていません。 1から6までの目が同じ確からしさで出る大小2個の立方体の サイコロを同時に投げ,大きいサイコロの目の数を a, 小さいサイコロの目の数をbとし,次の [ルール]でカードをひっくり返して表裏を逆にします。 [ルール] • まず αの倍数が書かれたカードをひっくり返して 表裏を逆にする。 1 2 3 4 5 6 次に6の倍数が書かれたカードをひっくり返して, 表裏を逆にする。 7 8 9 10 11 12 13 14 15 16 17 18 例えば a=4,b=6 のとき,まず 4, 8, 12, 16 のカードをひっくり返し、 次に 6, 12, 18 のカードを ひっくり返します。 その結果 4, 6, 8, 16, 18 のカードが裏向きになります。 次の各問に答えなさ い。 問1a=3,b=5のとき、表向きになっているカードは全部で何枚ありますか。 ) 問2 すべてのカードが表向きになっている確率を求めなさい。 問31のカードが表向きになっている確率を求めなさい。 問46のカードが表向きになっている確率を求めなさい。 問5 裏向きになっているカードの枚数が6枚である確率を求めなさい。 2

回答募集中 回答数: 0
数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0
数学 中学生

全部教えてください! 書いてるところは合ってるかも知りたいです

5章 相似な図形 5章の確認 1 相似条件と相似比 右の図で、 ∠BAC = ∠BCD である。 次の問 いに答えよ。 □(1) 相似な三角形を記号を使って表せ。 また, そのときに使った 相似条件を書け。 △ABCDLCBD □ (2) の値を求めよ。 24.2=3x 2x=3 B 3 5章 相似な図形 5章の応用 1 右の図のような鈍角三角形ABCがある。 点Pは点Aを出発 して毎秒0.5cmの速さで辺AB上を点Bまで進む。このとき 2つの三角形ABCと△PBDが相似になることが2回ある。 それは何秒後と何秒後か。 12 cm -P -2.. 32:2 ★ 2 右の図のように, △ABCの辺BCの中点をDとし,辺AB上 に点Eをとり,辺CAの延長と線分DEの延長との交点をFと する。 AC=12cm, DE: EF=2:1のとき, 線分FAの長さ を求めよ。 2 三角形と比・平行線と比次の図で, xの値をそれぞれ求めよ。 □ (1) DE // AC □ (2) a//b//c □ (3) AD//EF//BC A--8-D EF B x=6 中点連結定理の利用 右の図の△ABCで,点D,E,F,Gは それぞれ線分AB, BC, CD, DAの中点である。 12 21 B A+ 29 C 27. d ★ 3 右の図のように, ∠ABC=90° の直角三角形がある。 辺AC上に点Dをとり, 点Bを通り線分BDに垂直な直線上 に∠EDB= ∠CAB となる点Eをとる。 また, 線分EDと辺 ABの交点をFとする。 次の問いに答えよ。 D このとき 四角形DEFGは平行四辺形であることを証明せよ。 B E 4面積比体積比 右の図で, ∠C=90°, AD: DB=3:1である。 点Dから辺ACにひいた垂線をDEとする。 このとき,次の問い 3 □ (1) ADEと四角形 DBCEの面積比を求めよ。 E 9:1 B ★□ (2) △ADE, 四角形 DBCE を辺ACを軸として1回転してできる立体をそれぞれPQとす るとき PとQの体積比を求めよ。 ★ 5 線分の比 右の図の ABCDにおいて, DE: EC=2:1, □F, Gはそれぞれ対角線 AC, 線分AEと対角線BDとの交点 である。 このとき, DG: GF を求めよ。 B' 150 (1) ADBCAFBE であることを証明せよ。 B JC 3cm D 5cm B □(2) AB=6cm, CA = 10cm, ∠DBC = ∠DCB のとき, 線分AFの長さを求めよ。 D 本 4 右の図で、四角形ABCDはAD // BCの台形, Eは辺CDを F D 12に分ける点, Fは辺AD上にあって, BC=FD となる点, Gは線分BDとEFの交点である。 △EDGと四角形ABGF の面積比が27のとき, AF FD を求めよ。 5 右の図で △ABCは, AB=AC=12cm, ∠A=90°の直角 「二等辺三角形, 三角柱ABC-DEFは△ABCを底面とし,高さ が12cmである。 AP=AQ=4cm となるように, 辺AB, AC 上にそれぞれ点P,Qをとり, DR=3cm となるように,辺 AD上に点Rをとる。 点Rを通り, 底面に平行な平面と線分 PE, QF との交点をそれぞれ, S, Tとする。 6つの点A, P, Q,R, S, Tを頂点とする立体の体積を求めよ。 E B 0 G IE 151

回答募集中 回答数: 0