学年

教科

質問の種類

数学 中学生

中二、式の計算の問題です。学校に提出して点数を付けられるので、間違っていないかこれで正しいかしっかりと確認して欲しいです。間違ってたら教えてください。よろしくお願いします

数学レポート課題 ① (第一章 式の計算) 連続する3つの偶数の和は、6の倍数になることを、 整数 n を使って説明しなさい。 連続する30の偶数のうち真ん中の数をとする。 連続する3つの偶数は2n-2.2n.2n+2と表せる。 これらの和は(2n-2)+2n+(2n+2)=6n. ここでは整数だからonは6の倍数である。 ●よって連続する3つの偶数の和は6の倍数である。 各位の数字の和が3の倍数である3ケタの整数は、3の倍数であることを説明しなさい。 aを1~9の整数、l.Cを0~9の整数にすると 379の整数は1000+102+Cと表せる。 また各位の数の和が3の倍数なので、athtcは3の倍数である。 その和は1000+10h+C=13×33+170+13×3+1)h+c =3(33a+3h)+a+h+c 右の図のように、 カレンダーの 5つの数を囲むとき、 囲まれた5 つの数の和は真ん中の数の5倍に なることを説明しなさい。 ここで 33.0+3lは整数なので3(33a+3h)は3の倍数である。 またa+b+cも3の倍数なので、3(330+)+ath+Cは3の倍数で よって、各位の数字の和が3の倍数である3ケタの整数の和は3の倍数 ある。 日 月 火 水 木 金 土 である。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 連続する4つの奇数の和は8の倍数になることを、 整数 n を使って説明しなさい。 nを整数とすると連続する4つの奇数は、2n+1.2n+3.2n+5.2n+7 5つの数のうち真ん中をれとする。 と表せる。 その和は(2n+1)+(2n+3)+(2n+5)+(2n+7)=8n+16 =8(n+2) ここで+2は整数だから、8(n+2)は8の倍数である。 よって連続する4つの奇数の和は8の倍数である。 5つの数は n-7.n-1.nn+1.n+7で表せる。 その和は(n-1)+(n-1)+h+(n+1) +(n+7)=5n. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ここでは整数だから5には5の倍数である。 よって、5つの数の和は5の倍数である

未解決 回答数: 1
数学 中学生

解き方を教えて欲しいです😿🙇‍♀️

(7)AさんとBさんは,連続する3つの自然数について,その中で最も大きい自然数の2乗から最も小さい自然 数の2乗を引いた差について調べた。 次はそのときの会話文である。 会話文 Aさん「連続する3つの自然数が1,2,3のとき,最も小さい自然数は1,最も大きい自然数は3だか ら、最も大きい自然数の2乗から最も小さい自然数の2乗を引いた差は32-12 = 8 となるね。」 Bさん「連続する3つの自然数が2,3,4のときは,最も小さい自然数は2, 最も大きい自然数は4だか ら、同じ計算をすると 4222=12だね。」 Aさん「考えてみると, 8=4×2 だから, 連続する3つの自然数が1,2,3のとき, 計算した結果の8は 4の倍数になっているね。」 Bさん「ほんとうだ。 連続する3つの自然数が2,3,4のときも, 計算した結果の12も4の倍数だよ。」 このとき、次の問いに答えなさい。 (i)2人は「連続する3つの自然数について,最も大きい自然数の2乗から最も小さい自然数の2乗を引いた 差は,4の倍数になる。」と予想し,次のように証明した。 れの選択肢の1~4の中から1つずつ選び、 その番号を答えなさい。 [証明] に最も適するものを、 それぞ 連続する3つの自然数のうち、最も小さい自然数をnとすると, 最も大きい自然数 である。 よって、最も大きい自然数の2乗から最も小さい自然数の2乗を 引いた差は, )² - n²=n²+ - n² =4( は自然数だから, 4 ( ) は4の倍数である。 よって、連続する3つの自然数について、最も大きい自然数の 2乗から最も小さい自然数の2乗を引いた差は, 4の倍数になる。 (i)2人はある連続する3つの自然数について, 最も大きい自然数の2乗から最も小さい自然数の2乗を引 いた差を求めたところ, 240 になった。 このときの計算式として正しいものを 答えなさい。

解決済み 回答数: 1
数学 中学生

(2)の(イ)の②の解き方がほんとうにわかりません。教えてください。答えは3:8になります。

(エ) さくらさんの女 同じ道を家に向かって毎分40mの速さ 分後か求めなさい。 (2) 下の図のように, AB=3cm, BC=5cmの平行四辺形ABCDがあり、 2点P.Qをそれぞ (ウ)の各問いに答えなさい。 1525 A 2 P R$a>5/5 STOJAJB1005> (ア) 下の [会話] は, 太郎さんと花子さんがRP=RQとなることを証明する手順について ④と⑤には、あて には,あてはまる辺を, し合っている場面である。①と② |には,あとのア~オの中からあてはまる語句 はまる角をそれぞれ書きなさい。また。 を1つ選び, 記号を書きなさい。 ア 円周角 イ錯角 [会話] 0001 太郎さん:RP=RQとなることを証明するためには,どうしたらいいかな。 花子さん:△ARPとCRQが合同であることをいえばよさそうね。 太郎さん:ARPと△CRQの辺について,仮定から, = (2) D るよ。 花子さん:△ARPと△CRQについて,大きさが等しいといえる角はあるかな。 太郎さん : 平行線の は等しいから,∠PAR=∠QCRがいえるね。 が等しいことから, 4 花子さん : 同じように平行線の ウ 同位角 エ中心角 (イ) AP=2cmのとき, 次の問いに答えなさい。 ① PDの長さを求めなさい = るよ。 太郎さん:そうすると, ARP ≡△CRQがいえるから, RP=RQが証明できるね。 23 がわかってい 対頂角 1 ⑤もいえ 1 (1) F ② △PRDの面積を Si,四角形ABQRの面積をSとするとき, S, S2を最も簡単な整 の比で表しなさい。 201

未解決 回答数: 0