学年

教科

質問の種類

数学 中学生

答えを紛失してしまったので答え合わせをして欲しいです。

単元テスト ① (1) 3,2 (2)-2,-3,-0.5,4 ②(1)+6 (2)一号 ③ (1) ーヶ人多い (1)(-8)×7=-56 (2)(72)÷(-8)=9 (3)0÷(-3)=0 1 用語の意味がわかっていますか。 8 正の数・負の数の乗法や除法ができますか。 下の数について, 次の問いに答えなさい。 次の計算をしなさい。 -2. 3. 2. 0, -0.5, -4 (1) (-8) x 7 (2) (-72)÷(-8) 5' -1198 (1) 上の数のうち, 自然数をすべて書きなさい。 (2) 上の数のうち, 負の数をすべて書きなさい。 (3) 0÷(-3) (4) (-2)×6׳ (6) (2)―4で高い (3)-10分後前 (4)300m北 ④ (1) 4.8 (2)1.2 ⑤ (1)-2,3-0.6 (2)-3-1.4.0.1,05 ⑥ (1)(-7)-(-4)=-7+4 =-3 (2)(-26)+(-17)=-43 (3) -0.8+1.5=0.3 (4)/-(+3)=1/2-1/3 =- (7)-7-12+3=3-7-12 =-16 (2)-8-(+15)+(-7)=-8+15-7 (4)(号)×6=-4 (5)=1/ (6)(一部)=1/ ⑨(1)(-2)×(-3)×(-4)=-24 (2)(-100)÷5×(-4)=80 (3)(-24)÷(-4)÷(-3)=-2 (4)-42÷(-2)3=16÷(-8) =-2 (10 (1) 9+3×(-4)=9+(-12) (2)(-3)2×4+48÷(-8)=36+(-6) =-5 (3)3-14-12-5)×63=3-{4+3×6} =3-22 =-19 (4)3(一)÷2=番一話 =-= (5)(一号+3/3)×(-30)=(-1+1)×(-30) =1/5×(-30) =0 (3) 17-(-8)-9+23=17+8-9+23 =-2 =16 四(1)①③ 二 (2)①②③ 12 (12×311 (2) 1379,5 333 1×5 2 正の符号, 負の符号をつけて、 数を表すことができますか。 次の数を、正の符号 負の符号をつけて表しなさい。 (1) 0より6大きい数 2×4 102 9 3数以上の乗法や除法ができますか。 次の計算をしなさい。 (20より 言小さい数 3 正の数・負の数を使って, 量を表すことができますか。 〔〕内のことばを使って, 次のことを表しなさい。 [10] (1)5人少ない 〔多い〕 (2) 4℃低い 〔高い] (1) (-2) x (-3) x (-4) (2) (-100) ÷ 5x (-4)=20x-4 (3) (-24)(-4)+(-3) (4)-4 ÷ (-2)³ -(2×3×4 正の数・負の数の四則をふくむ式の計算ができますか。 次の計算をしなさい。 +(10÷12) (1) 9 +3× (-4) (2) (-3)" × 4 + 48 ÷ ( 8 ) (3) 10 分後 〔前〕 (4)300m南 〔北〕 12× 12 絶対値の意味がわかっていますか。 14 次の問いに答えなさい。 (1) 4.8の絶対値を書きなさい。 (2) 絶対値が3より小さい整数をすべて書きなさい。 4-(-3) 11 14 48. (3) 3-(4-(2-5) x 6} (4) (5) (-1/+1/2)×(-30) 1/1-30)1+1 数の集合と四則計算の関わりがわかっていますか。 下の①~④の計算の中から、 次の条件にあうものをす 4+3×6 42 5 正の数・負の数の大小関係がわかっていますか。 次の問いに答えなさい。 べて選び 記号で答えなさい。 ①O+□ ② ○ - □ ③ ○ × O÷□ 39 (1) 2.3との大小関係を不等号を使って表しなさい。 (1)○. 口がともに自然数であるとき、答えがいつでも自然 数になるもの (2) 下の数を,小さい方から順に並べなさい。 (2)○. 口がともに0を除く整数であるとき. 答えがいつて も整数になるもの 6 ww -1.4, 1.0.3.0.5 正の数・負の数の加法や減法ができますか。 次の計算をしなさい。 12 素数や素因数分解がわかっていますか。 次の問いに答えなさい。 (1) (-7)-(-4) (2) (-26)+(-17) 26 =-(7-4) =+(0.8+1,5) 6 + (7-12+3) 一番+ (3) (0.8)+1.5) 3数以上の加法や減法ができますか。 次の計算をしなさい。 (1) -7 - 12 + 3 (2) -8 (-15) + (-7) (3)17(-8) 19 +23 (4) (1)/ (+1) 21198 (3)99 + 3133 224 A B E F +5 -9 +11 +8 79 71 79-71+74+83+85+82 74 83 85 82 (1) 198を素因数分解しなさい。 (2) 108 にできるだけ小さい自然数をかけてある自然数の 2乗にするには、どんな数をかければよいですか。 正の数・負の数を使って、問題が解決できますか。 下の表は, A. B, C, D. E. F の6人のテストの点 数からCの点数をひいた値を表したものです。 Cの点数が 74点であるとき、この6人の平均点を求めなさい。 24 C D

解決済み 回答数: 1
数学 中学生

345わからないです教えてください

す 得点 100点 B2 実戦レベル 31標準レベル て,箱ひげ 最大 15 を表す る。 四分位範囲と箱ひげ図 右の表は、クイズ大 会に参加した9人の得点で ある。 表をもとにして,箱 ひげ図をかくと、右の図の ようになった。 a,bの値を 求めなさい。 <15点〉 (R6秋田) 59913141516 (a 3460 表 913 16 208 15 (単位:点) T 4 箱ひげ図の活用 あるグループの1人 図1 図 5 a 146 20 (点) が15問の○×クイズに挑 戦した。 右の図1は、7人 の正解した問題数のデータ を,箱ひげ図に表したもの である。 11 14 (問) 図2 24 10 14 10/17 20 b 10.5 2 ぶ 値を読 ない 大値、 ラム る。 だけでは のである。この記録を箱 ひげ図で表したとき、もっ ヒストグラムと箱ひげ図 右の図は,小学校 (人) 6年生40人のソフトボー [10] ル投げの記録を整理し, ヒストグラムで表したも A61 UP 8 あとから,みずきさんが同じ15問の○×クイズ に挑戦した。図2は、7人とみずきさんを合わせた 8人の正解した問題数のデータを箱ひげ図に表した 20 ものである。 <15点×2〉 (R6富山) (1) みずきさんの正解した問題数として考えられ る値は2つある。 その値をそれぞれ求めよ。 ヒント 6 4 2 05101520253035404550(m) ■ (2) 8人のデータの平均値を求めよ。 とも適当な図を,次のア~エまでの中から選びなさい。 <15点〉 (R6愛知) 5 5 ウ 10 15 20 25 30 35 404550(m) 5 10 15 20 25 3035404550(m) エ 5 10 15 20 25 30 35 40 45 50(m) 5 10 15 20 25 30 35 40 45 50(m) 実生活への活用力 箱ひげ図の活用 下の図は, 札幌市,横浜市, 那覇市について, 2022年における, 降水量が1mm以上であった日 の月ごとの日数をすべて調べ,箱ひげ図にまとめた ものである。 この図から読みとれることとして正し いものを次のア~エのうちからすべて選び, 記号で 答えなさい。 <10点×2)(R6沖縄) 札幌市 なに さっぽろ I ない 3 箱ひげ図の活用 A62 う ・右の図は, A組, B組 C (点) 組D組のそれぞれ31人の生徒 が受けた, 100点満点の数学の テスト結果を,箱ひげ図に表し 80 たものである。80点以上の生徒 の人数がもっとも多い組はどれ か、次のア~エからもっとも適 切なものを1つ選び、その記号 を書きなさい。ただし,得点は 整数とするヒント 横浜市 100 那覇市 90 70 2345678910111213141516171819202122(日) ア 1年間に降った降水量がもっとも多いのは札幌 市である。 60 イ 札幌市,横浜市, 那覇市いずれも9日以上の月 が半数以上あった。 50 40 30 A組 B組 C組D組 ウ 那覇市は10日以上14日未満の月が3か月以上 あった エデータの四分位範囲がもっとも小さいのは横浜 市である。 <20点〉 (R6三重) ア A組 イ B組 ウ C組 エ D 組 それぞれの市について、データの個数は である。 アイ 順に並べたときの24番目の値である。

解決済み 回答数: 1
数学 中学生

写真にうつっている大問10(2)(イ)が分かりません。 解説お願いします! (1)は4、(2)(ア)は6,7,8,9が答えです。 (2)(イ)の答えは20になるみたいです。

10 数直線において, 0を表す点を12を表 す点をAとし,以下の[操作] によって点 0 1 2 0 1 2 3 4 5 B, C, D を定める。 -9 7 8 9 10 11 12 +11+ A [操作] ① 1以上11以下の自然数を1つ選び, この自然数を表す点をBとする。 ② ABの中点をCとする。 ③ OCの中点が表している数を四捨五入して得られた自然数を表す点をDと する。 この [操作] を繰り返すときは,③で得られた点Dが表す自然数を 1 における点Bが表 す自然数に置き換えて点Cや点Dを新たに定める。 例えば, 0 (0), A (12) のように書く とき, B(1) とすると 「B(1)→C(6.5)→D (3)」 となり, B(1) としてこの [操作]を2回く り返すと 「B(1) 問いに答えよ。 C(6.5)→D(3)」⇒「B(3)→C(7.5)→D (4)」 となる。このとき,次の (1)B (2) とすると,この[操作] を1回行って得られる点Dが表す自然数を求めよ。 (2)1以上11 以下の自然数nについて, B(n) として何度かこの [操作]を行ったとき 初めてD(4) となるまでに行った [操作]の回数を 【n】 とする。たとえば,【1】 2 である。 (ア) 【n】 =2となる1以外の自然数n をすべて求めよ。 (イ) 【1】 + 【2】 + 【3】 + 【4】 + 【5】 + 【6】 + 【7】 + 【8】 + 【9】 + 【10】 + 【11】 の値を求めよ。

解決済み 回答数: 1