学年

教科

質問の種類

数学 中学生

中3数学です。 203の(3)がわからないので教えて欲しいです! 回答も載せてるので誰か教えていただけると嬉しいです。

(1) 定義域が-4≦x≦-2, 値域が 3y12 □(3) 定義域が√2≦x≦√3値域が 0≦y≦6 202 次の問いに答えなさい。 □ 11 関数 y=-2x2 について, 定義域が −2≦x≦a のとき, 値域が - 18≦y≦b となる。 定数a, b の値を求めなさい。 □ (2) 関数 y=ax (a≠0) について, 定義域が -4≦x≦2 のとき, 値域が by≦8 となる。定数a, bの値を求めなさい。 203 次の問いに答えなさい。 ■(1) 定義域が −2≦x≦1 である2つの関数 y=-3z,y=ax+b (a>0) の値域が一致するような, 定数a, bの値を求めなさい。 □(2) 定義域が -1≦x≦2 である2つの関数 y=2x2, y=ax+b の値域が一致するような, 定数 α b の値を求めなさい。 ■(3) 定義域が -3≦x≦2 である2つの関数 y=ax2 (a≠0), y=3x+b の値域が一致するような,定 数α, bの値を求めなさい。 □4) 定義域が−2≦x≦4 である2つの関数y=ax2 (a≠0),y=bx+2(b>0)の値域が一致するよう な定数 α, bの値を求めなさい。 204 右の図の直角三角形ABC は, 2辺AB, BC の長さの比が 1:3 である。 辺 ABの長さをxcm, △ABCの面積をycm² とす あるとき、次の問いに答えなさい。 (1)yをェの式で表しなさい。 また、xの値の範囲も答えなさい。 ■(2)(1) で求めた式について,yはxの関数であると考える。 定義域を 1≦x≦2 とするとき, 値域を求めなさい。 A xcm ycm2 h B ■3) (1)で求めた式について,リはこの関数であると考える。値域が3≦y≦9 となるとき,定義域を求 めなさい。 54 第4章 関数y=ax2 第4章

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
1/17