学年

教科

質問の種類

数学 中学生

問3の(1)イを詳しく教えてください。

2 4 下の図のように、y=-4x+1 フがあります。 ①のグラフとy軸 フとの交点をPとします。 y 軸上に点Cがあり、点Cのy座標は -3です。 点Oは原点とします。 次の問いに答えなさい。 12xxxx/ 6x+2 A 18 2 3×1 3xxx 1 24 67012 C 21 10 (aは正の定数)...... ② のグラ ①のグラフと、関数y=ax A, B とし, ①のグラフと②のグラ 軸との交点をそれぞれ [0,12] P B 問2a=1のとき, 点Pの座標を求めなさい。 64= y. X 108 の値が2倍,3倍, ・・・になると、 の値も2倍,3倍, ・・・になる。 84 54 19,0) 問1 関数 ①について正しく述べているものを,次のア~エから1つ選びなさい。 アグラフは点 ( 12, 0) を通る。 Xx の値が増加すると,yの値は減少する。 ウ 対応するとyの値の積xy は、 常に一定である。 9×12=108 119%/=84 47=12 4y = 36 x=9 y ==== 7+12. 4x62 3×63 3/4-1/+2 27 = 4x+6 64-36 x=6 br 問3 AOP の面積と PCBの面積が等しくなるときのaの値を求めるために、 明日斗さん は次のような見通しを立てました。 ま ES (明日斗さんの見通し) 24 aの値を求めるためには、点Pの座標がわかればよい。 △AOP と △POC の面積の比は AOP: △POC=アであるから. △AOP の面積 とPCBの面積が等しいとき ACP と ACBの面積の比は. 12: AACP: AACB アイとなる。 このことを利用して, 点Pの座標を求めたい。 次の(1), (2) に答えなさい。 3 (1) 明日斗さんの見通しのア きなさい。 に当てはまる, 最も簡単な整数の比をそれぞれ書 (2) 明日斗さんの見通しを用いて, △AOP と PCBの面積が等しくなるときのαの値を 求めなさい。

未解決 回答数: 2
1/5