学年

教科

質問の種類

数学 中学生

(2)について質問です。なぜ直径(b+0.4)になるんですか。同じく第4レーンの説明もなぜ(b+6.4)になるんですか。

解けたら メル挑戦争 説明 PA 難易度 txitx ★ レベル★★ 考えてみよう 下の図のように,大きさのちがう半円と, 同じ長さの直線を組み合わせて陸上競技用 のトラックを作った。 半部分 直線部分 幅1m 半円部分 カレンダー いろいろな am bm 第1レーンの 走者が走る距離 右の図は さんは、 1+84 のよう さん 3の倍 第4レーンの 走者が走る距離 第1レーン 第4レーン もっと 部分の長さはem 最も小さい半円の直 径は6m, 各レーンの幅は1mである。 また, 最も内側を第1レーン, 最も外側を第4レー ンとする。 ラインの幅は考えず、円周率を とすると次の問いに答えなさい。 きょり (第1レーンの内側のライン1の距離をem とすると, f=2a+bと表される。 この αについて解きなさい。 l=2a+wb コ両辺を入れかえる まる説明 2a+b=l bを移項する 2a=l-rb 2 l-πb 両辺を2でわる a= 2 a= l-xb 2 木) (2) 図のトラックについて, すべてのレーンの ゴールラインの位置を同じにして,第1レー ンの走者が走る1周分と同じ距離を各レーン の走者が走るためには、第2レーンから第 4レーンまでのスタートラインの位置を調整 する必要がある。 第4レーンは第1レーンよ スタートラインの位置を何m前に調整す るとよいか。 求めなさい。 ただし, 走者は, 各レーンの内側のラインの20cm外側を走る ものとする。 第1レーンは, amの直線部分の長さ2つ分と、 直径(6+0.4)mの半円の弧の長さ2つ分の合計だから、 ax2+(b+0.4) × ×2 =2a+b+0.4 (m) ... ① ×12/1 第4レーンは, amの直線部分の長さ2つ分と。 直径(6+6.4)mの半円の弧の長さ2つ分の合計だから、 a x2+(b+64)xxx2 =2a+xzb+6.4x(m) ---2 ②①の分だけ、第4レーンのスタートラインを前にす ればよいから、 (2a+b+6.4x)-(2a+b+0.4x) =6r(m) 67 m

解決済み 回答数: 1
数学 中学生

(1)の答えって2枚目の写真のように表したらだめなんですか?

P.18~19 式による説明 3 余る よう 下の図のように,大きさのちがう半円と, 同じ長さの直線を組み合わせて,陸上競技用 P.20~21 等式の 完成 のトラックを作った。 カレンダーに並んだ数を いろいろな規則性がひそ 半円部分」 直線部分 幅1m 半円部分 岩手 ■ 数, 1, 5。 でわ 形で表されること am bm 第1レーンの 走者が走る距離 第4レーンの 走者が走る距離 第1レーン J 第4レーン もっと 直線部分の長さはam, 最も小さい半円の直 径は6m, 各レーンの幅は1mである。 また 最も内側を第1レーン, 最も外側を第4レー ンとする。 ラインの幅は考えず、円周率を とすると次の問いに答えなさい。 きょり (1) 第1レーンの内側のライン1周の距離をlm とすると,l=2a+b と表される。 この式を αについて解きなさい。 これかえ 右の図は、ある月のカ さんは、右の図のよう 1+8+9=18=3 × 6 のように、3つの数の 進さんは、他の部分 3の倍数になるか、 進さんの囲み ょう。(ただい (19) n 右下の この3 n+( n+5 和歌山 したか 3 の 囲み方を変 横一列 使って l=2a+b 10 両辺を入れかえる P.18~19 式による説明 2a+wb=l 箱の中 bを移項する 2a=l-rb (例 6枚入 l-rb 両辺を2でわる = とき, l-rb 数 2 a= 2 2 数こ 女数を 栃木 (2) 図のトラックについて,すべてのレーンの

解決済み 回答数: 1
数学 中学生

大問5:1次関数の問題です。(2)の①の解説に点Qは(0,t+6)になると書いてあります。なぜそうなるのか教えていただきたいです。よろしくお願いします。

によせて考えよ 立てやすくなる。 次関数 きは だから 8 とすると、 Q.1+6) と表せる。 06-1-6 OC-8より、 (+6)×8-414-24 OAと変わる場合と、辺AB と交わる OA上にあるとき、 つまり、 場合に分けて考える。 6のとき、 0 ①より、 SA1+24-30 t= 3 まけ (2)300cm² (1) 図2のya15のとき のグラフの傾きと等し 通る直線を く、 かけばよい。 (2) (1)より おもりの入 っていない水そうでは O 123456789101112131415 12分で満水になるから、1分間に入る水の量は、 30×30×30 ÷12=2250(cm) 0 <新潟県> き,y 高知県 > 県〉 平行な辺をもつ長方 おもりを入れた場合は10分で満水になるので おも 27 長さを求めなさい。 ただし, 原点0から点 (1, 0) までの距 および原点から点 (0, 1)までの距離をそれぞれ1cmと する。 T 教 <千葉県 改 (10点) 右の図のように, 4点0(0,0), A(0, 12), B-8, 12), 0 ) を頂点とする長方形と直線lがあり、直線の C(-8 5. 輝きは 3 である。 次の問いに答えなさい。 せっぺん <福島県> (10点×3) 直線が点C を通るとき,lの切片を求めなさい。 ②辺BCと直線lとの交点をPとし,Pのy座標をtとする。 y A 学 12 国 また,lが辺 OA または辺AB と交わる点を Qとし、∠OQP の面積をSとする。 ①点Qが辺 OA上にあるとき, Sをt の式で表しなさい。 ②S=30 となるtの値をすべて求めなさい。 図1のように、立方体の水そうがあり、その中 6 に直方体の鉄のおもりが入っている。この水そ うに毎分一定の割合で水を入れたところ, 10分後に 満水になった。 水を入れ始めてからx分後の水そう 水の深さをycm とする。 図1の水そうに水を入 30 15 0 4 図2 図 1 れ始めてから満水になるまでのxとyの関係をグラフで表すと図2のようになった。 鉄 もりの高さが15cm, 水そうの1辺の長さが30cmであるとき 次の問いに答えなさい だし。水そうは水平に置き 水そうの厚さは考えないものとする。 鉄のおもりのみ <愛知県> ( 10 これと同じ水そうに空の状態 30

解決済み 回答数: 1