学年

教科

質問の種類

数学 中学生

それぞれの大問の➀の解説がほしいです。 ほかの問題もわからないですけど、➀で基礎をおさえたいです💪

Point 4 直線上の点の座標 例題図のように、2つの直線 がある。上に点A,上に点B,C, 上に点を四角形ABCD が正方形となるようにとるとき、点 Aの座標を求めなさい。 11-2r LE 人 解き方 点の座標を文字でおき, B~Dの座標を文字で表すことによ 1辺の長さについての関係式から求める。 A D (i) 点の座標をとすると,Aは直線2r上の点であるから、 座標は2rにαを代入して20. よって、 AB=24 B C m: y=-x+15 点Dの座標はAの座標と等しいので24座標は点Dが直線y=-x+15 上の点であ ることから、y=-x+15にμ=20 を代入して、2ax+15より,z=15-2 (iii) ()より、AD=15-2a-a=15-34, 四角形ABCD が正方形であることから, AB=AD であるから, 2015-34より, a=3. よって, A の座標は3. 座標は2×3=6 問題 4 次の問いに答えなさい。 □(1) 次の図で点Aの座標をαとするとき 座標をαで表しなさい。 ① A (a) ② Y 4 I I [5 6 0 ③ !! A 4)( (2)次の図 点A, B の座標がともにαであるとき 線分ABの長さをαで表しなさい。 ① y 0 B y=x+3 y=-x+3 ② ③ y=x JA y= x+4 IB 10 y 答 (36) 57 A ((24) IB I -20 ■(3) 次の図で、 四角形ABCD が正方形であるとき, 点Aの座標を求めなさい。 ① y y=2x+1 A D ② y □③ !! IC x+3 (3, 6) S A D JA DAR I OB 0 B C C B C 5 y=-x+4 y=x+1 11 直線の式 87

解決済み 回答数: 1
数学 中学生

207 青線のところが何故そうなるのかわからないです

☆ 場 D 207 同じものを含む円順列・ じゅず順列 80★★★☆ 赤球1個, 白球2個, 青球4個の計7個の球がある。 (1) これらの球を円形に並べる方法は何通りあるか。 (2)これらの球にひもを通して首飾りを作る方法は何通りあるか。 同じ色の球を含むから,単純に (7-1)! とはできない。 (1) ReAction 回転して同じ並び方が含まれるときは, 1つを固定して考えよ 例題189 赤球1個,白球2個,青球4個のうち、どの球を固定するとよいか? (2)首飾り裏返して同じになるものが含まれる。(じゅず順列) 今のプロセス (1)の場合の数 単純に としてはいけない。 2 場合に分ける 左右対称である (1) 7個の球を 円形に並べる 左右対称でない (1)の中に裏返して 同じものは含まれない。 (1)の中に裏返して 同じものが含まれる。 Action » 同じものを含むじゅず順列は,左右対称と非対称に分けよ (17個の球を円形に並べる総数は,1個の赤球を固定し て考えると、白球2個, 青球4個を1列に並べる順列の 1個しかない赤球を固定 6 することで,回転して同 じものがなくなる。 章 15 順列と組合せ 総数と一致するから 6! 2!4! = =15(通り) (C) (2)(1) の順列のうち, 左右対称であるものは、白球1個, 青球2個を1列に並べる順列の総数と一致するから 左右対称で あるものは, 赤球を通る 3! =3(通り) 2! ?! 対称軸の右 よって、 左右対称でないものは 15-312(通り) このうち, 首飾りを作ったとき, 裏返して同じものが 2つずつあるから,首飾りの数は 12÷2=6(通り) したがって,求める首飾りの総数は 半分 (左半分)の並べ方を 考えればよい。 例えば 赤 3+6=9 (通り) Point.. 同じものを含むじゅず順列を求める手順 ① 円順列の総数を求める。 1個だけの球などを固定して考える。 ② ①のうち,左右対称となる円順列の数を求める。 は裏返すと同じもの。 ③ 左右対称でない円順列の数(①の個数) (②の個数)を求め, 2で割る。 ④ 求めるじゅず順列の数は、②の個数)+(③の個数)である。 207 赤球1個, 白球4個, 青球6個の計11個の球がある。 (1)これらの球を円形に並べる方法は何通りあるか。 (2)これらの球にひもを通して首飾りを作る方法は何通りあるか。 379

解決済み 回答数: 1
1/13