学年

教科

質問の種類

数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

3 右の図1で,点Oは原点 曲線は 関数y= 1 xのグラフを表している。 点Aは曲線上にあり, x座標は-6である。 曲線上にある点をPとする。 図1 20- 15- 次の各問に答えよ。 10- A 〔問1] 次の ① と ②に当てはまる数を, 下のアークのうちからそれぞれ選び, 記号で答えよ。 P 点Pのx座標をα y 座標をbとする。 αのとる値の範囲が-3≦a≦1のとき, bのとる値の範囲は, ① ≤bs ②2 である。 -5 O+ 5 9 3 3 ア イ ウ I 0 4 2 4 1 1 オ 力 キ 4 2 32 ク 160 〔問2〕 次の 3 と ④に当てはまる数を, 下のア~エのうちからそれぞれ選び, 記号で答えよ。 右の図2は,図1において, 図2 20- 15- x座標が点Pのx座標と等しく, y 座標が 点Pのy座標より4大きい点をQとした 10- A 場合を表している。 点Pのx座標が2のとき 2点A, Qを通る直線の式は, y= 3 x+ 4 である。 P -5 O+ 5 1 1 (3 ア 2 イ ウ H - 2 2 2 4 ア 6 イ 5 ウ 4 I 1 〔問3〕 図2において,点Pのx座標が3より大きい数であるとき,点Qを通り傾き1/12 の 直線を引き, y 軸との交点をRとし, 点と点A, 点Aと点R, 点Pと点Q. 点Pと点Rをそれぞれ結んだ場合を考える。 △AORの面積が△PQRの面積の3倍になるとき、点Pのx座標を求めよ。 -3-

回答募集中 回答数: 0
数学 中学生

(3)②と③の問題の解き方教えてください! ちなみに答えは②√5③25/12です。 図形に色々書いてあって見ずらいかもしれませんがすみません💦

【問4】 各問いに答えなさい。 図1は、円の円周上に3点A, B, C があり, 線分AB が円Oの直径であり, AとC, BとCをそれぞれ結んだも のである。 ∠Cの二等分線と線分AB, 円0との交点をそ れぞれD, Eとする。 AC=3cm, BC=6cm とする。 (1) 図1において, ∠ABC=α°とするとき, 大きさを表す式を,次のア~エから1つ選び, きなさい。 7 (a +30) ウ (75-α) T (a +45)° I (90-a) ① 四角形 AFBCの面積を求めなさい。 (2) 図2は、図1において, 線分CE上にCB // AF となる 点Fをとり,FとA, F とBを結び, F からABに垂線 FGをひいたものである。 ② FGの長さを求めなさい。 ADCの 記号を書 SATB = 2 290 SHEN old ofor A 図2 かげ A D it old G=EXEXY 3√5 x 10 x 1/² = 9 21α= 4² 22. ỏ DOG SVE 3154²9. E 6am 9+3 9+36-² x2=45 2=3√5 [GVS B. 755 245 215 5 (3) 図3は、図1において, 線分 AE 上に CA//DF となる 点Fをとり、点と点を結んだものである。 ① △ACD △DAF は, 次のように証明することがで に証明の続きを書き, 証明を完成させ きる。 なさい。 [証明] △ACDと△DAF で, CA//DF で, 平行線の錯角は等しいから, <CAD=∠ADF ...... ① ② 線分ADの長さを求めなさい。 ③ △DFEの面積を求めなさい。 図3 191 F ADO 9+36=x2 X²=/ 45 B

回答募集中 回答数: 0
1/64