学年

教科

質問の種類

数学 中学生

画像の赤丸がついている問題 の求め方を教えていただきたいです🙇🏻‍♀️

考えるとその速さは約何km/h か。 もりおか 2 右は、新幹線「はやぶさ」のある便が東京駅を出発して 3000 盛岡駅に到着するまでの各駅の発着時刻をまとめたもので ある。 以下の問いに答えなさい。 駅名距離(km) 時刻 8km 15 東京 0 12:20発 ↓600 300 141 0.8 うえの 5 x (1) 東京一盛岡間のおよそ500kmを2時間で走ったと 上野 おおみや 12:25 着 271 4 12:26発 1.5 18 大宮 12:44着 294 31 250 4.4 12:45 発 66 1500 い 仙台 13:51 着 4.3 325 1926 13:52発 4030. 盛岡 497 14:32着 447 00 2 445 24 493. 48 2 ト 323 きょり (2)(1) のように、 物体がある距離を一定の速さで移動 したとみなしたときの速さを何の速さというか。 (3)(2)の速さが最も速いのはどの駅とどの駅の間か。294 261300 また、その速さは何km/min か、四捨五入して小数第1位まで求めなさい。 おそ B 31 172 (4) (3)の速さをキロメートル毎時で表すと何km/hか。 (5)平均の速さが最も遅いのはどの駅とどの駅の間か。また、その速さは何km/min か、 四捨五入して小数第1位まで求めなさい。 (6) (5) の速さをキロメートル毎時で表すと何km/hか。 194. (7) 新幹線「はやぶさ」は走行中に最高速度の320km/hに達することがある。 このような、 物体のその時々の速さを平均の速さに対して、 何の速さというか。 250km/h(2) 平均の速さ (1) (3) 大宮駅 仙台駅の間 速さ (5) 東京駅と 上野駅の間 速さ (7) 瞬間の薄さ 1330 25. 2500 14. S 1100 2150 160 2/32° 4017 325 $172. 1y5.11728 4.5kmywin (4) 270km/h 0.8km/min(0) 48mm/h

回答募集中 回答数: 0
数学 中学生

画像の3、4、5、6の求め方を教えていただきたいです🙇🏻‍♀️

考えるとその速さは約何km/h か。 もりおか 2 右は、新幹線「はやぶさ」のある便が東京駅を出発して 3000 盛岡駅に到着するまでの各駅の発着時刻をまとめたもので ある。 以下の問いに答えなさい。 駅名距離(km) 時刻 8km 15 東京 0 12:20発 ↓600 300 141 0.8 うえの 5 x (1) 東京一盛岡間のおよそ500kmを2時間で走ったと 上野 おおみや 12:25 着 271 4 12:26発 1.5 18 大宮 12:44着 294 31 250 4.4 12:45 発 66 1500 い 仙台 13:51 着 4.3 325 1926 13:52発 4030. 盛岡 497 14:32着 447 00 2 445 24 493. 48 2 ト 323 きょり (2)(1) のように、 物体がある距離を一定の速さで移動 したとみなしたときの速さを何の速さというか。 (3)(2)の速さが最も速いのはどの駅とどの駅の間か。294 261300 また、その速さは何km/min か、四捨五入して小数第1位まで求めなさい。 おそ B 31 172 (4) (3)の速さをキロメートル毎時で表すと何km/hか。 (5)平均の速さが最も遅いのはどの駅とどの駅の間か。また、その速さは何km/min か、 四捨五入して小数第1位まで求めなさい。 (6) (5) の速さをキロメートル毎時で表すと何km/hか。 194. (7) 新幹線「はやぶさ」は走行中に最高速度の320km/hに達することがある。 このような、 物体のその時々の速さを平均の速さに対して、 何の速さというか。 250km/h(2) 平均の速さ (1) (3) 大宮駅 仙台駅の間 速さ (5) 東京駅と 上野駅の間 速さ (7) 瞬間の薄さ 1330 25. 2500 14. S 1100 2150 160 2/32° 4017 325 $172. 1y5.11728 4.5kmywin (4) 270km/h 0.8km/min(0) 48mm/h

回答募集中 回答数: 0
数学 中学生

至急です🏃💨 中2数学です🙇🏻‍♀️՞ 今週テストで解答配られてなくて丸つけ出来ないのでなるべく早く答え合わせしたくて丸つけして貰いたいです!! ベストアンサーつけます!

NO. 11 数学通信 「毎日少しずつ」 ~それがなかなかできねんだなあ~ 3年C組 1 ある中学校の2年生男子の握力の記録を運動部と文 1 化部に分けて調べたところ、次のような測定結果が得 られました。 下の問いに答えなさい。 文化部 (単位:kg) 34 30 40 43 20 運動部 第1四分位数 35 第2四分位数 40 |第3四分位数 41 運動部 (単位: kg) 40 27 44 38 41 38 48 41 40 37 31 32 17 34 36 41 25 30 45 35 39 24 \41 29 (1) 第1四分位数 29 (1) 運動部と文化部の第1四分位数, 第2四分位数, 第3四分位数を求めなさい。 (2) 運動部と文化部の四分位範囲を求めなさい。 文化部 第 2 四分位数 33 第 3 四分位数 39 運動部 6 (3) 次の図に運動部と文化部の箱ひげ図をかきなさい。 (2) 文化部 10 運動部 (4) 運動部と文化部ではどちらの方が散らばりが大き いといえますか。 その理由も答えなさい。 文化部 0 5 10 15 20 25 30 35 40 45 50 (kg) (3)左の図にかき入れなさい。 文化部 [理由] (4) 範囲が広い P150 50%. 2 次の箱ひげ図は, ある中学校における100人の生徒 の通学時間を表しています。 下のア~カに当てはまる 数を書きなさい。 2 25%. ア 35 10 15 20 25 30 35 40 45 50 55 (分) (1) 通学時間の中央値はア分,範囲はイ分, 四分位範囲はウ 分である。 イ ウ 40 15 (2)30分から45分の通学時間がかかる生徒はおよそ エ人である。 H 50 (3) 通学時間が45分以上の生徒の割合は,全体のほぼ オ 25 オ%であり,通学時間が50分の生徒は, 少なく ともカ人いる。 カ

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
1/7