学年

教科

質問の種類

数学 中学生

この問題教えてください

水 2 9 木 3 10 17 24 まり、 18 25 章のとびらからLINK!! 数学の広場 2つの自然数の積を簡単に求める方法 13ページで計算したとおり, 十の位の数が同じで、一の位の数の和が10になる 2桁の自然数どうしの積は,次のようにして求めることができます。 ① 2桁の自然数の十の位の数と十の位の数に1を加えた数の積を, 千の位と百の位に書く。 (求めた積が1桁のときは、百の位に書く。) ② 2桁の自然数の一の位どうしの積を, 十の位と一の位に書く。 (求めた積が1桁のときは、一の位に書き, 十の位には0を書く。) am 24 58 71 × 26 × 52 × 79 5609 624 L4x6 -2×(2+1) 3016 -8×2 -1×9 -5×(5+1) -7x (7+1) ○上のように計算できることを, 文字を使って証明してみましょう。 証明 2つの2桁の自然数は, 十の位の数が同じで、一の位の数の和が 10 だから, a, b, c をすべて9 以下の自然数とし,b+c=10と すると,それぞれ10a+b10a+c と表すことができる。 したがって, それらの積は, (10a+b)(10a+c)=(10a)2+( × 10a + =100a2+10ax10+ =100 (a2+α) + =100 + 1 3式の利用 と は、ともに1桁あるいは2桁の自然数だから、 が千の位と百の位に書かれる数, | が十の位と一の位に 書かれる数になる。 45ページで,ほかの2桁の自然数どうしの 積の求め方についても考えてみよう。 41

未解決 回答数: 1
数学 中学生

分からないのでわかる方いたら、解説お願いしますm(_ _)m

10 関数 y=ax2 ✓チェックコーナー 中学で学習したこと 1 関数 y=ax² yはxの2乗に比例し、x=3のとき y = 18 であるとき ポイント xの式で表すと y=l ] x=2のときy=[ 2 関数y=ax のグラフ (1) 関数 y=ax のグラフを[ ]という。 (2) グラフは [ ]を通り, [ ]軸について対称。 (3) α > 0 のときは, [ 開いた形。 ]に開いた形α 0 のときは [ (4) αの値の絶対値が小さいほど, グラフの開き方は [ 51 関数y=ax のグラフが点 (2,-4) を通るとき、 次の問に答えな さい。 (1) α の値を求めなさい。 y 0 x 2 ]に 0 [増] ]。 (2)この関数のグラフをかきなさい。 -6- (3)この関数のグラフは,点(-5,m) を通る。 m の値を求めなさい。 -8 052 右の図の(1)~(4) は下のテ〜 エ の関数のグラフを示したものである。 (1)~(4) はそれぞれどの関数のグラフか ⑦ y=x2 ①y=-2x2 ⑦y= H A 12 23 x2 -10 ·12 (1) (3) (4) (2) y = ax¹ a> o yはxの2乗に比例し 153 で表しなさい。 x=-3のとき y=3であるとき yをxの式 関数 y = 2x で, xの値が1から めなさい。 3)関数y= めなさい。 1から3まで増加するときの変化の割合を求 -xで,xの変域が2≦x≦5のときのyの変域を求 4)関数y=ax2 で, xの値が4から2まで増加するときの変化の割合 は3である。の値を求めなさい。 5) 関数 y=ax2 で, xの変域が-1≦x≦3のとき, yの変域が 0≦ys6 の値を求めなさい。 である。 α 154 右の図のように、関数y= 1 2 xのグラ 上に, x座標がそれぞれ3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, 座標は3である。 次の問に答えなさい。 (変化の割合) _yの増加量) ( xの増加量) 変化の割合は、 1次関数 y=ax+bで は一定だが、 数y=axで は一定ではない。 (3)y の変域を 求めるときは、 グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず 物 と直線の交点 A,Bの座標を 求める。 直線AB の式を求めなさい。 <座標に目もりが 2 △AOBの面積を求めなさい。 ないが、放物線 線分AC 上の点で, △AOBAPB となるような点Pをとる。 点Pの がどちら側に いているか 開 座標を求めなさい。 き方の大きさは どうかから考え ると,答えられ x る。 < (2) AAOB & y 軸で2つの三角 形に分けて考え るとよい。 (3)直線AB と 平行で点を通 る直線と線分 AC との交点を 考える。 高校で学習すること 高校では, 関数 y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行 移動させたグラフ(頂点が原点0にない放物線) を学習する。(数学1 ) y=ax W 0 原点 -(2.α) I チェック 1 2x2, 8 2 (1) 放物線 (2) 原点 (0),y (3) 上下 (4) 大きい

未解決 回答数: 1
1/208