学年

教科

質問の種類

数学 中学生

分かりやすい説明お願いします!

れ 均点は 甘いた式 (秋田) 地球儀上で,ブラジルは日本のおおよそ反対側にある。 現在の 直行便ができたらと仮定したときの, めいさんとパイロットである ところ、日本ブラジル間の飛行機の直行便はないが,下のは お父さんとの会話である。 きょり 動画が見られるよ。 めい もし、日本-ブラジル間の直行便ができたら, 飛行距離や飛行時間はどれくらいかな。 父 地面からの高さを高度というのだけど, 飛行機は高度約9~14km を飛ぶよ。 便によって, 高度は変わるんだけど,偏西風の影響を考えると,日本からブラジルに向かうときより, ブラジルから日本に向かうときのほうが低い高度を飛ぶことが多くなりそうだよ。 めい : 行きと帰りの飛行距離の差も求めてみようかな。 めいさんは,ブラジルは日本のちょうど反対側にあるものとし, 飛行距離は右の図のように半円の弧の長さで求められると考えた。 飛行機は一定の高度を保って飛び, 離着陸のことは考えないことに する。 地球の半径をkmとして,次の問いに答えなさい。 ① めいさんは、行き(日本からブラジルに向かうとき)は高度 akm,帰り (ブラジルから日本に向かうとき)は行きよりbkm 低い高度を飛ぶと考えた。 行きと帰りの飛行距離の差を求め なさい。 ただし, a>bとする。 1章 飛行距離 日本 ブラジル 行きは高度akm, 帰りは高度 (a-b)kmを飛ぶね。 式の計算 2匹 = ② ①の結果から, 行きと帰りの飛行距離の差についてわかることを次のア~エから選び, 記号 で答えなさい。 また、そのように考えた理由を説明しなさい。 ア 地球の半径の長さは関係するが, 行きの高度は関係しない。 イ 地球の半径の長さも、行きと帰りの高度の差も関係する。 ウ 地球の半径の長さは関係しないが, 行きの高度は関係する。 エ 地球の半径の長さは関係しないが, 行きと帰りの高度の差は関係する。 記号 ●説明 高度12km を飛び、地球の半径を6378km, 飛行機は時速900km で進み,円周率を3と すると,日本-ブラジル間の飛行時間は何時間か求めなさい。

回答募集中 回答数: 0
数学 中学生

23ページは⑷、24ページは2のエ〜コまで、25ページは⑷を教えてください。一つでも大丈夫です!!

日 点 Step B 図1のような, 縦5cm 横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま、 図2 のように,m枚を下方向につないで長方形Bをつくる。 次に, そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】 は,次の(ア)(イ) のいずれかとする。 はば (ア) 幅1cm重ねてのり付けする。 とうめい (イ) すき間なく重ならないように透明なテープを貼る。 数N の倍 【つなぎ方】 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm -31cm 右 8cm 5cm m枚 9cm -1cm m枚 1cm テープで貼る 下 第1章 23 145 第6章 実力テスト n列-- (図1) (図2) (図3) のり付けして重なった部分 (図4) 例えば、図4の ①10×40=400cm² (イ)で2回つな 横の長さが31 '58 129×2+13×3 (2)(8×4-3)×2×1+(5×3-2)×3×1-6 り,そのBを4列, (ア) で1回, 39 -691cm² 4であり, たての長さが9cm, 39cm となる。 [栃木] (1) 【つなぎ方】は,(3) たこのとき,Cの面積を求め なさい ( 10点 べて (2) 【つなぎ方】 表せ なった部分の (4) あるか =102 皮」で 世院高] た。 このとき, のり付けして重 (3)A をすべて (ア)でつないでBをつくり, そのBをすべて(イ)でつないでCをつくった。 Cの 周の長さをlcm とする。 右方向の列の数が下方向につないだ枚数より4だけ多いときは6 の倍数になる。このことをmを用いて説明しなさい。 ( 15点) (4)Cが正方形になるときの1辺の長さを短いほうから3つ答えなさい。(10点) 23

回答募集中 回答数: 0
数学 中学生

教えてくださった方フォローします!教えてください🙏🙏🙏

応用 例題 6 考え方 6人を次のように分けるとき, 分け方は何通りあるか。 (1) A,B,Cの3つの部屋に2人ずつ分ける。 (2) 2人ずつの3つの組に分ける。 (2) は, (1) 部屋 A, B, C の区 別がない場合である。 {a,b} {c, d} {e, f} ↓ ↓↓ A B C (1) での A CO B 分け方 たとえば, (2) での1つの分け方 {a,b},{c,d}, {e, f} におい て、この3つの組に A, B, Cの 名前をつけると, (1) での分け方 が作られる。 (2) での1つの分け B A C 10 方から, (1) での分け方が何通りずつ作られるか考える。 (1) 部屋Aの2人の選び方は C2通りある。 部屋Bの2人の選び方は残りの4人から選ぶので2通り 部屋 A, B の人が決まれば、残りの部屋Cの2人は決まる。 よって, 分け方の総数は,積の法則により 15 6C2×4C2=15×6=90 90 通り (2) (1) で, 同じ人数の組 A,B,Cの区別をなくすと, 3! 通り ずつ同じ分け方ができる。よって,分け方の総数は 90 90 3! 6 = =15 答 15通り 【?】 (1) Aに1人, Bに2人, Cに3人と分ける。 20 (2)1人,2人,3人の3つの組に分ける。 という問題の場合 (2) において (1) の答えを3! で割る必要があるだろ うか。 また,それはなぜだろうか。 8人を次のように分けるとき, 分け方は何通りあるか。 (1) A,B,C,D の4つの組に、2人ずつ分ける。 25 (2) 2人ずつの4つの組に分ける。 (3)3人,3人, 2人の3つの組に分ける。 Links イメージ 解答 目標 練習 33 5 第1章 場合の数と確率 海 洋 2

回答募集中 回答数: 0
数学 中学生

このページの全部がわかりません! 解き方は、わかるのですがなんでこうなるかとかが難しいです。 教えれくれたら嬉しいです! 答えは、次の写真に載ってます

例題10 次の問いに答えよ。 (1) 2a=36 のとき, a b を求めよ。業情の爆 (2) xy=35, y:z=2:1 のとき, xz を求めよ。 (3) a:b=74 のとき, (2a+b): (2a-b) を求めよ。 (4) (a+b)(a-b) = 4:3のとき, a :b を求めよ。 解説 a:b=c:d のとき, a C ad=bc が成り立つ。 b d (3) a:6=7:4より a=7k, b=4k (≠0) と表されることを利用する。 I 解答 (1) 2a = 36 より (2) xy=3:5より y b+501 +0001- a=3/1 1.16) -b y 2 2 y:z=2:1より Z 1 3 へんぺん ゆえに a:6=26:6 ①,②の辺々 をかけて 3 y 2 = 3:2 xx- 4001 y 2 15 14 1000 ゆえに 00:z=6:5 (答) (3) a:6=74 より (4) (a+b)(a-b) = 4:3 より 3(a+b)=4(a-b) 3a+3b=4a-46 -a=-7b a=7b =(2×7k+4k): (2×7k-4k) =18k: 10k ゆえに a: b=76:6 1 4b = 9:5...... ・・・・(答) V = 7:1 .....…... ・ 参考 (2) は、x:y=3:56:10, y:z=2:1=10:5より, x:z=6:5 と求めてもよい。 注 (2) のように, 2つの等式があるとき, 左辺は左辺どうし,右辺は右辺どうしでかける ことを辺々をかけるという。 演習問題 38. 次の問いに答えよ。 百 (1) x=3:7, y:z=2:5のとき, x y を求めよ。 (2) x:y=6:5, y:z=7:2のとき, xz を求めよ。 18 (S) (3) (2a-b)(a+b)=3:2のとき, a:b を求めよ。 39.x:5=y:3 のとき,次の比において, 比の値を求めよ。 左 (1) x:y (2) (x+y): (x-y) (x−y) (3) (x²-y²) : (x² + y²) a=7k, b=4k (k+0) と表すことができる。 ゆえに (2a+b): (2a-b) 3|5 IC 65

回答募集中 回答数: 0
1/3