学年

教科

質問の種類

数学 中学生

全部教えてください! 書いてるところは合ってるかも知りたいです

5章 相似な図形 5章の確認 1 相似条件と相似比 右の図で、 ∠BAC = ∠BCD である。 次の問 いに答えよ。 □(1) 相似な三角形を記号を使って表せ。 また, そのときに使った 相似条件を書け。 △ABCDLCBD □ (2) の値を求めよ。 24.2=3x 2x=3 B 3 5章 相似な図形 5章の応用 1 右の図のような鈍角三角形ABCがある。 点Pは点Aを出発 して毎秒0.5cmの速さで辺AB上を点Bまで進む。このとき 2つの三角形ABCと△PBDが相似になることが2回ある。 それは何秒後と何秒後か。 12 cm -P -2.. 32:2 ★ 2 右の図のように, △ABCの辺BCの中点をDとし,辺AB上 に点Eをとり,辺CAの延長と線分DEの延長との交点をFと する。 AC=12cm, DE: EF=2:1のとき, 線分FAの長さ を求めよ。 2 三角形と比・平行線と比次の図で, xの値をそれぞれ求めよ。 □ (1) DE // AC □ (2) a//b//c □ (3) AD//EF//BC A--8-D EF B x=6 中点連結定理の利用 右の図の△ABCで,点D,E,F,Gは それぞれ線分AB, BC, CD, DAの中点である。 12 21 B A+ 29 C 27. d ★ 3 右の図のように, ∠ABC=90° の直角三角形がある。 辺AC上に点Dをとり, 点Bを通り線分BDに垂直な直線上 に∠EDB= ∠CAB となる点Eをとる。 また, 線分EDと辺 ABの交点をFとする。 次の問いに答えよ。 D このとき 四角形DEFGは平行四辺形であることを証明せよ。 B E 4面積比体積比 右の図で, ∠C=90°, AD: DB=3:1である。 点Dから辺ACにひいた垂線をDEとする。 このとき,次の問い 3 □ (1) ADEと四角形 DBCEの面積比を求めよ。 E 9:1 B ★□ (2) △ADE, 四角形 DBCE を辺ACを軸として1回転してできる立体をそれぞれPQとす るとき PとQの体積比を求めよ。 ★ 5 線分の比 右の図の ABCDにおいて, DE: EC=2:1, □F, Gはそれぞれ対角線 AC, 線分AEと対角線BDとの交点 である。 このとき, DG: GF を求めよ。 B' 150 (1) ADBCAFBE であることを証明せよ。 B JC 3cm D 5cm B □(2) AB=6cm, CA = 10cm, ∠DBC = ∠DCB のとき, 線分AFの長さを求めよ。 D 本 4 右の図で、四角形ABCDはAD // BCの台形, Eは辺CDを F D 12に分ける点, Fは辺AD上にあって, BC=FD となる点, Gは線分BDとEFの交点である。 △EDGと四角形ABGF の面積比が27のとき, AF FD を求めよ。 5 右の図で △ABCは, AB=AC=12cm, ∠A=90°の直角 「二等辺三角形, 三角柱ABC-DEFは△ABCを底面とし,高さ が12cmである。 AP=AQ=4cm となるように, 辺AB, AC 上にそれぞれ点P,Qをとり, DR=3cm となるように,辺 AD上に点Rをとる。 点Rを通り, 底面に平行な平面と線分 PE, QF との交点をそれぞれ, S, Tとする。 6つの点A, P, Q,R, S, Tを頂点とする立体の体積を求めよ。 E B 0 G IE 151

回答募集中 回答数: 0
数学 中学生

間違っていたら答え教えてください明日提出なので😭

■基本問題 15 三角形の角 99 三角形の角〉 三角形で、2つの内角が次の大きさのとき,残りの角の大きさを求めなさい。 また、 その三角形は、鋭角三角形, 直角三角形, 鈍角三角形のどれですか。 80 180 -135 55 45 735 35°. 55° 3 □(2) 40°, 65° □(3) 25° 30° 2 三角形の内角と外角 ①〉 次の図で,の大きさを求めなさい。 1A 180 90 14252 -38142 52° 45° 760 □(2) 180 D □(3) 180 A <x ・74 180 125 x=106 106 55 125° 55 C x=380 3 <三角形の内角と外角 ②> 次の図で, x, y の大きさを求めなさい。 B B 46° 50° C 96 80 100 x=45° (1) 704 -76 910 180 (2) A 180 x=76 61° -176 □(3) 30° D 95 福 DI 104 704 50 x x=300 A65° 85 区 科 コード y=250 85 学 51° X=95% 40° x95 180 通 501 【学法 B -85 502 B 85 95 03 D C 750 C45° 福 B 180 4) (5) y=50 62 16250 A (80 □ (6) (Po 180 77 103 -21° 93_ 887 F 32 y Tos 83 E xC 180 -77-77 703 [桜の 180 E F Bx=33° C △ 45° 33 32 200 40 x=1030 B y C D D x=103 B =740 4 〈平行線と三角形の角〉 次の図で,ℓ//m のとき, x, y の大きさを求めなさい。 y=1430 □1) l D <60° YE □(2) 77° l B I 150 m C 55° 60 B y=1150 76° m x=600 -y D x=760 y=27° □(3) 5 〈いろいろな図形と三角形の角〉 次の図で, xの大きさを求めなさい。 口1) 73 752 125 B52° 40% A Dx125 7=1250 33° □(2) 121° D 66° B ・C x=350 2005 ( 180 m ~18° 43 25° D 737 7=430 y=1370 4 (80 137 C □(3) H SA A <37° 40° G B F ~25° D '20° E 43 コード 601 602 603 学科 604 605 環境 606 を行いま

未解決 回答数: 1
1/2