学年

教科

質問の種類

数学 中学生

全てわからない

(2) 第2学 14. ABCD に次の条件を加えると,それぞれどんな四角形になるか答えなさい。 D 【思考・判断・表現】(3点×3点)A (1)AC=BD (2) AC=BD, AC⊥BD (3) AC⊥BD G ひし形 B 15. 右の図1で, △ABCの辺 AB 上に点Pをとり、点Pと頂点Cを 結ぶ。∠APC の二等分線をひき,辺 ACとの交点をQとすると, PQ // BC となった。 【思考・判断・表現】 (2点×2) (1) BPC の大きさをx, ∠AQPの大きさをとするとき, PCQの大きさをxとy を用いて表しなさい。 (2)図2は図1に点Qを通り,辺 AB に平行な直線をひき,辺BC との交点を R, 線分PCとの交点をSとし, 頂点と点 S, 点Pと 点R を結んだものである。 ▲BRSと面積の等しい三角形をすべて 答えなさい。 図1 B 図2 P 92 8(2) 12 =y-(90- is gov <PcQ=y-a △PBCより xctata=180 29 =180-2 a = 1800 た,それ =2C 2 △PRS ASCQ P BR 1a=5 10-5=5 6=5 16.大小2つのサイコロを同時に投げるとき,大きいサイコロの出た目の数を小さいサイコロの出 10-5=5 た目の数を とする。 このとき,次の確率を求めなさい。 2-6=5 4-6=5 a=2 a=1 ただし,どの目が出ることも同様に確からしいとする。 【思考・判断・表現】(3点×2) X (1) 2a-b=5 となる確率 36=12 a=4 b (2) 2直線 y=xとy=2x-1が交わる確率 8-6=5 a (1 b=3 TE 8-3=5 a=36-6=5 b=1 17. 次のア~エの中から正しいものだけを選び, 記号で答えなさい。 【思考・判断・表現】(4点) 6-1=5 ア3人でじゃんけんをするとき,1人だけが勝つ場合とあいこになる場合では,起こりやすさは同じである サイコロを60回投げると,1の目は必ず10回出る 2枚のコインを同時に投げたとき,起こりうる場合は「2枚とも表」, 「2枚とも裏」,「1枚は表で1枚は裏」 の全部で3通りとなり,どのことがらが起こることも同様に確からしい ぐあ エ赤球2個と白球3個と青球1個の6個が入っている箱の中から、同時に2個の球を取り出すとき, 2個とも白球になる確率が最も大きい ちょ は1人

回答募集中 回答数: 0
数学 中学生

この問題全部教えてください

10. 右の図のように,∠C=90°の直角三角形ABC で, ∠Bの二等分線と 辺ACとの交点をDとする。 点D から辺 AB へ垂線をひき、辺ABとの 交点をEとすると, BE=BC となる。 次の問に答えなさい。 NCB (対応順) E 【思考・判断・表現】(3点×2) (1)このことを証明するとき、どの三角形とどの三角形の合同をいえば よいですか。 B 'C 2つの角 (2) (1) を証明するときに使う三角形の合同条件を答えなさい。 11. 右の図のように,二等辺三角形ABC の長さの等しい辺 AB, ACの 中点をそれぞれM,Nとし, BN と CMとの交点をDとすると, △DBCは 二等辺三角形になる。このことを以下のように証明した。 」にあてはまるものを答えなさい。 【思考・判断・表現】 (2点×6) (証明) MBC と ANCB において, B 仮定から, AB=AC よって, MB=- 1/2AB NC=12121 MB= BC は共通 ア イ AB=AC で, 二等辺三角形の底角は等しいから, MBC=ウ ① ② ③ より [ I ]がそれぞれ等しいから, AMBC=ANCB したがって, <MCB= ∠ オ カ が等しいから, ADBCは二等辺三角形である。 12. 右の図の□ABCD で, BAD=78°,∠BEF=151°のとき, DFE の大きさを求めなさい。 【思考・判断・表現】 (3点) 13. ABCD の AB, DCの中点をそれぞれ M, Nとすれば, 四角形 MBND は平行四辺形になる。このことを証明しなさい。 【思考・判断・表現】 (6点) M D N A 月終) て 1180 97 83 180 QSC 1 2 178 180 151 151 29 C BE M N B

回答募集中 回答数: 0
数学 中学生

回答よろしくお願いします🙇‍♀️🙇‍♀️

E さまざまなグラフ 1. 次の文章の空所に入るものとして最適なものを、 ahから1つずつ選びましょう。 実験や計測、アンケート調査などで得た数量の集まりを (ア (ア)をよりみやすく示す表現として図や (イ といいます。 )が使われます。 アンケートで「はい」「いいえ」 「その他・無回答」の3項目の割合を示すには、扇形の角度が割合を表 す(ウ )や、(エ )が向いています。 (エ) は 「10年前と現在の割合の推移」など、 割合の時間による変化を表すのにも便利です。 a.帯グラフ e. データ b. 円グラフ f. グラフ c. 折れ線グラフ d. 絵グラフ g. ヒストグラム h. 棒グラフ 2. 次の下線部と表に示されたデータを表すのに、[ ]内のどちらのグラフを用いるのが 適切か選び、○で囲みましょう。 (1) ある学校のクラス別にみたインフルエンザにかかった生徒のデータ クラス 1組 2組 生徒数(人) 6 5 3組 4 4組 5組 6組 7 9 5 (2) アサガオの高さを毎朝8時に測ったときの、 10日間の高さの変化 円グラフ . 棒グラフ ] 月/日 高さ (cm) 8/2 8/1 12.5 12.0 8/3 8/5 8/4 8/6 14.2 16.4 18.0 18.9 21.0 8/7 8/8 8/9 8/10 25.1 26.1 29.7 「そのほか」 [ 帯グラフ · 折れ線グラフ ] 6 7 8 9 10 15 12 5 0 1 2 45 (3) A高校の生徒45人の英語のテスト (10点満点)について、得点別にみた人数のデータ 点数(点) 0 1 人数(人) 0 1 20 3 4 55 45 • 〔絵グラフ ヒストグラム] 3. 次の文について、内容が正しいものには○を、正しくないものには×を入れましょう。 (1) 実験結果のデータは、グラフより表でみせるほうが常にわかりやすい。 (2)円グラフ1つで時間の経過による変化を示すことは難しい。 (3) 棒グラフは、複数の数値のうち「どれが一番多いか少ないか」を示せる。 ( )

回答募集中 回答数: 0
1/10