学年

教科

質問の種類

数学 中学生

(5)の(ア)と(イ)の解説お願いします!!

4 右の図のように, 東西にの 太郎さん 花子さん びるまっすぐな道路上に 地点Pと地点Qがある。 太郎さんは地点Qに向 かって,この道路の地点Pよ り西を秒速3mで走っていた。 西 -東 花子さんは地点Pに止まっていたが, 太郎さんが地点Pに到着する直前に,この道路を 地点Qに向かって自転車で出発した。 花子さんは地点Pを出発してから8秒間はしだいに 速さを増していき、 その後は一定の速さで走行し, 地点P を出発してから12秒後に地点Q に到着した。 花子さんが地点P を出発してからx秒間に進む距離をym とすると, xとyと の関係は下の表のようになり, 0≦x≦8の範囲ではxとy との関係は y=ax2 で表され るという。 x (F) 0 ア 8 10 *** 12 y (m) 0 4 16 24 イ 次の(1)~(5)の問いに答えなさい。 (1) a の値を求めなさい。 (2) 表中のア, イにあてはまる数を求めなさい。 (3) xの変域を 8 ≦x≦12 とするとき と との関係を式で表しなさい。 (4)xyとの関係を表すグラフをかきなさい (0≦x≦12) (5) 花子さんは地点P を出発してから2秒後に, 太郎さんに追いつかれた。 (ア) 花子さんが地点Pを出発したとき, 花子さんと太郎さんの距離は何m であったかを 求めなさい。 (イ) 花子さんは太郎さんに追いつかれ, 一度は追い越されたが,その後, 太郎さんに追い ついた。 花子さんが太郎さんに追いついたのは, 花子さんが地点Pを出発してから何 秒後であったかを求めなさい。

回答募集中 回答数: 0
数学 中学生

難しいかもしれませんが この問題の解き方を教えてください🙇🏻‍♀️

り 2 公 B,Cがあり,x座標はそれぞれ- 2, 1,3である。 直線ACとy軸との交点を点Dとし, 線分CD上に2点 C, D また、xの変域が−2≦x≦1のとき,yの変域は0≦x≦2で ある。 ......① 太郎さんと花子さんは次の問題について話している。 次の各問いに答えよ。 問題 2Ⅱ) 人外学高学賃 図のように、関数y=ax(aは定数)のグラフ上に3点A. D A €22 とは異なる点Pをとる。 四角形POBCの面積が3となるときの点Pの座標を求めよ。 -20 1 高 花子: 問題の下線部 ①から,点Aのy座標が分かるね。 太郎:そうだね。 点Aの座標が分かればα=アとなるよ。 次に,点Bと点C の座標も求めておこう。 うーん、四角形POBCの面積を直接求めるのは難しそうだなあ・・・ 花子:まず四角形DOBCの面積を求めてみるのはどうだろう。それなら,3点 A,B,Cの座標からAC/ OBとなるから、求めやすいんじゃないかな。 太郎:そうか! 四角形DOBCの面積はイだから,そこから四角形POBCの 面積が3となるような点Pの座標を見つければ良いね! (1) 会話文のア, イに入る数を答えよ。 (2)点Pの座標を求めよ。 (8-x) 自 80% SW 8 3 大小2つのさいころを投げたとき, 大きいさいころの出た目をα, 小さいさいころの出た bとし,直線y=x-bを考える。 この直線とx軸,y軸の交点をそれぞれA,Bとし,原点を0とするとき、次の確率を求めよ。 (1) 直線の傾きが1以下になる確率 (2) OABが直角二等辺三角形になる確率 (3)点Aのx座標が整数になる確率 DEAREA&&58=0A = 4 図のように, AB=AE=1, AD=2の直方体 ABCDEFGHがある。 点Pが対角線AG上を動く とき、次の問いに答えよ。 (1) AP:PG=3:1のとき, 四角すいP-EFGHの体積を求めよ。 (2) CPの長さが最小になるときのCPの長さを求めよ。 (3)点Pが平面 CHF 上にあるときのCPの長さを求めよ。 (途中経過を図や式で示すこと) H A IB E F

回答募集中 回答数: 0
数学 中学生

この答えが 1番がY =20で、2番が 5秒後から9秒後まで なんですけど何でか教えてください

(3) 図のように、AB=6cm, AD=4cmの長方形ABCD と、 1週 が 8cmの正方形から1週が4cmの正方形を切り取った形の図形 EFGHIJ がある。 点B、C、F、Gは同じ直線上にあって、CDと EFは重なっている。 図形 EFGHIJは固定したまま、長方形 ABCD を直線にそって、矢印の方向に、頂点Bが頂点Gに重なるま で、毎秒1cmの速さで移動させる。 図11は、移動の途中のようすを 示したものである。 H dem D dem 6cm E 4cm Sem B CF Semi- 図 H 長方形ABCDが移動を始めてからで秒後の、長方形ABCD と図 A D 形 EFGHI が重なった部分の面積を!cmとする。 E このとき、次の①、②の問いに答えなさい。 jem ただし、長方形ABCD が移動を始めるとき、および、頂点Bが頂 BFC G 点Gに重なったときは、y=0 とする。 図Ⅱ なお、下の図を必要に応じて使ってもよい。 ① z=6のときの”の値として正しいものを、次のアからオまでの中から一つ選びなさい。 ア y=20 1 y=22 ウy=24 I y=26 *y=28 ② 長方形ABCD と図形 EFGHIJ が重なった部分の面積が18cm以上になっているのは、 長方形 ABCL が移動を始めて何秒後から何秒後までか、次のアからオまでの中から一つ選びなさい。 ア 12/23秒後から 21/27秒後まで イ 9 2 一秒後から9秒後まで ウ 5秒後から1秒後まで 19 エ 5秒後から9秒後まで オ 5秒後から秒後まで

回答募集中 回答数: 0