学年

教科

質問の種類

数学 中学生

平面特集①② 【すけさん】お願いします🙇‍♀️

問3の平面特集 ① 名前( カ 右の図において、 四角形 ABCD は平行四辺形である。 Eは辺BC上の点であり、 B: EC-32であり、 点はCDの中点である。 また、点Gは線分Bの中点であり、 点は線分 AEと線分PGとの交点である。 三角形 HGEをS. 四角形 HECF の面積をTとするとき、SとTの比を最も簡単 な整数の比で表しなさい。 GE:EC GH:HT 3=4 ( 右の図2のような長方形ABCD があり、点Eは辺BC上の点で, BB-4cm である。 また、 Fは辺CD を D の方向に延ばした直線上の点で, DF-2cmであり、辺ADと 線分EF との交点をGとする。 さらに、三角形ABGの面は三角形ABE の面積の2倍であり、四角形GECDの面積 は三角形ABE の面積の2倍である。 9/15 9/1600 このとき、 長方形 ABCDの面積を求めなさい。 DAEG=ABE DGECD=2ABE 右の図のように、三角形ABCの辺AB上に2点D, E, AC上に2点F, G を DF //EG//BC となるようにとる。 AB=6mm であり,三角形 ADF と四角形 DEGP と四角形 EBCG の面がすべて等しいとき、分 DEの長さを求めなさい。 A APDF DDEGF=DEB C G ) (右の図において、 四角形 ABCD は AB4cm, AD=5cm の長方形であり, 点Bは辺BCの中点 である。 また、点Fは辺AD上の点点G は CD 上の点で、 AP: FD=DG: CC-12である。 分 AC と 分 BFとの交点を H. 分 AC と線分EG との交点をとするとき、 四角形 HBE1 4 の面積を求めなさい。 AHHC 1:3 AI=IC. 25:3 75:30 図2 OBHI+DIBE 5xxx -x +4 15.2 = 6³² + ² = 65+ Wed, 4, 6, MAD HERPE AFPB-13 となるようにとり、線分 FCと線分EDとの交点をGとする。 このとき、 分 FCとGCの長さの比を最も簡単な整数の比で表しなさい。 2 KONZERT, HA R. C. DUROOMEDACON), - - ある。 BDC=6のとき, ∠ABDの大きさを求めなさい。 (カ) 右の図3のような平行四辺形ABCD があり, CD=10cmである。 辺AB上に点EをAB EB-41 となるようにとり。 分 EDと線分 AC との交点をF とする。 また、辺BC上に点GをAB//FGとなるようにとる。 このとき,線分PGの長さを求めなさい。 (ウ)右の図において、直線①は関数y=-2x+2のグラフである。 Aは直①と②との交点で あり,点Bはり軸上の点で、その座標は5である。 とりと直で囲まれた部分(色がついた部分)の内部および周上にある格子点 座標と 根がともに整数である点の個数を求めなさい。 なんで同上にあると分かる? →0からの直線がちになる から(345) 18個 1 図3. ① 図3 品 図3 (5₂0) (3 f) (0,3) (0.4) (0,5)

未解決 回答数: 1