学年

教科

質問の種類

数学 中学生

すみません、これの答えが無くて(問題もダウンロードしました。) 自分が答えただけだと心配です。 答えてくれないでしょうか?

数学1年 7章 データの活用 1 度数分布表の見方がわかっていますか。 右の表は, ある中 学生 36人のハンドボー ル投げの記録の度数分 布表です。このとき, 次の問いに答えなさい。 (1) 階級の幅は何mで すか。 (2)25m 投げた人の記録は、どの階級にはいっていますか。 (3) 表の中の | にあてはまる数を答えなさい。 (4) 20m 以上投げた人は、何人ですか。 17, 23, 33, 19, 16, 26, 27, 30, 29, 21, 11, 30, 22,23,21,23, 29, 26, 20, 14, 25, 17, 18 (kg) ハンドボール投げの記録 距離 (m) 度数(人) 累積度数 (人) 以上 未満 10~15 4 8 15~20 20~25 13 25~30 9 2 30~35 計 36 2 ヒストグラムや度数分布多角形がわかっていますか。 ある中学生23人の握力を調べたところ,下のように なりました。 このとき, 次の問いに答えなさい。 (1) 分布の範囲を求めなさい。 (2) 度数分布表を完成させなさい。 (3) ヒストグラムと度数分布多角形をかきなさい。 (人) 握力の記録 握力 (kg) 度数 (人) 以上 未満 10~15 15~20 20~25 25~30 30~35 計 23 通学時間(分) 以上 未満 0~15 15~30 30~45 45~60 計 10₁ 8 6 4 2 4 12 34 36 I | 0 5 10 15 20 25 30 35 (kg) 相対度数や累積相対度数がわかっていますか。 13 下の表は,ある高校の生徒30人の通学時間を調べて,そ の結果をまとめたものです。 このとき, 次の問いに答えなさい。 6 10 12 2 30 通学時間 度数(人) 相対度数 累積相対度数 0.20 0.33 0.40 (ア) 1.00 0.20 0.53 (イ) 1.00 (1)(ア), (イ)にあてはまる数を, 小数第2位まで, それ ぞれ求めなさい。 (2) 通学時間の最頻値を求めなさい。 (3) 通学時間の中央値がはいっている階級を答えなさい。 名 組前 4 度数分布表から,いろいろな値が求められますか。 下の表は,ある中学生20人の体重を調べて, その結 果をまとめたものです。 このとき, 次の問いに答えなさい。 体重 (kg) 以上 未満 35.0~40.0 40.0~45.0 45.0~50.0 度数(人) 啓林館 自己評価テスト 2 (ア) 6 (イ) 2 20 体重表 相対度数 (ウ) 0.25 0.30 (エ) 0.10 1.00 階級値 (kg) 階級値 × 度数 37.5 (オ) 47.5 52.5 57.5 10 打った点の総数(個) 円の周上または内部に打たれた 点の個数(個) 50.0 ~55.0 55.0 ~60.0 計 (1)(ア)~(ク) にあてはまる数をそれぞれ求めなさい。 (2) 平均値を求めなさい。 ヒストグラムから値を読みとることができますか。 5 (人) 右の図 11 10 は,ある学 8 級の生徒の 6 1日の読書 4 2 時間を調べ, 0 その結果を 5 15 20 25 30 35 (分) ヒストグラムに表したものです。このとき,次の問いに答え なさい。 (1) この学級の生徒は全部で何人ですか。 (2) 15分以上 20分未満の階級の度数を答えなさい。 (3) 中央値がはいっている階級を答えなさい。 75 (カ) 285 (キ) 115 確率の意味がわかっていますか。 6 右の図のような, 正方形と、 直径が正方形の1辺と同じ長さで ある円を組み合わせた図形に,コ ンピュータを使ってランダムに点 をくり返し打っていきます。下の 表は, 打った点の総数と,円の周 上または内部に打たれた点の個数をまとめたものです。 3000 個 の点を打ったときのデータを使って, 点が円の周上または内 部に打たれる確率を,小数第2位まで求めなさい。 1000 773 2000 1555 3000 2356

未解決 回答数: 1
数学 中学生

(2)のiii)を詳しく教えてください! 答えは④8 ⑤5 ⑥5です お願いします🙇‍♀️

①) ACDF △EHFであることを次のように証明した。 句を,後の【語群】 ア〜ケからそれぞれ一つずつ選び、その記号をマークせよ。 [証明] △CDFと△EHFにおいて 仮定から <CDF = 4① =90°. 平行四辺形 CDEFの向かい合う角の大きさは等しいから 4② = <FEH Ⅰ Ⅱより, ③がそれぞれ等しいから ACDFAEHF 【語群】 ア CFD オ EHF キ 3組の辺の比 イ DFH カ EFH ウ FCD I FHD ク 2組の辺の比とその間の角 図 4 C ii) ADFHの面積として正しいものを,次のア~エから一つ選び, その記号をマークせよ。 ア 10√5cm² イ 20cm² ウ 25cm² エ 40cm² U II D にあてはまる記号や語 ii) 平行四辺形の紙を2枚ずらして重ねて,それを 巻いて芯をつくることで、芯の強度を上げること ができる。 図4の平行四辺形 CD'E'Fは、図3の平行四 辺形 CDEF と, 平行四辺形CDEF と合同な平 行四辺形 C' D'E'F' とを CC' =3cm となるよう にずらして重ねてつくったものである。 この平行 四辺形 CD'E'Fを、 辺CFと辺D'E' がそれぞ れ芯の口の円周となるように巻いて、芯の口の円 周の長さが辺CFの長さに等しい円筒をつくり、 この円筒をQとする。 円筒Pに底面をつけてできる円柱形の立体を, その内部が空洞でないと考えて円柱とみなし, 円 柱P'とする。 同様に、円筒Qに底面をつけてできる円柱形の立体を円柱とみなし, これを円柱Q' とする。このとき,円柱Q'の体積は円柱P′ の体積の ⑥にあてはまる数字をそれぞれマークせよ。 ケ 2組の角 倍になる。 F E E'

回答募集中 回答数: 0
数学 中学生

(2)のiii)がわからないので詳しく教えてください! 答えは④8 ⑤5 ⑥5です よろしくお願いします🙇‍♀️

i) ACDF △EHFであることを次のように証明した。 ①~③ にあてはまる記号や語 句を,後の【語群】 ア〜ケからそれぞれ一つずつ選び、その記号をマークせよ。 [証明] △CDFと△EHFにおいて 仮定から ∠CDF = < ① = 90° 平行四辺形 CDEF の向かい合う角の大きさは等しいから ② =∠FEH ③ がそれぞれ等しいから ACDFAEHF Ⅰ Ⅱより、 【語群】 アオキ ア CFD EHF イ DFH カ EFH キ 3組の辺の比 ウ FCD エFHD 2組の辺の比とその間の角ケ 2組の角 ク ・・・I ii) △DFHの面積として正しいものを,次のア~エから一つ選び, その記号をマークせよ。 ア 105cm² イ 20cm ² ウ25cm² I 40cm² ii) 平行四辺形の紙を2枚ずらして重ねて, それを 巻いて芯をつくることで、芯の強度を上げること ができる。 図4の平行四辺形 CD'E'Fは、図3の平行四 辺形 CDEF と, 平行四辺形 CDEF と合同な平 行四辺形 C' D'E'F'とをCC' =3cmとなるよう にずらして重ねてつくったものである。 この平行 四辺形 C D'E'Fを、 辺CFと辺D'E' がそれぞ れ芯の口の円周となるように巻いて, 芯の口の円 周の長さが辺CFの長さに等しい円筒をつくり, この円筒をQとする。 円筒Pに底面をつけてできる円柱形の立体を, その内部が空洞でないと考えて円柱とみなし, 円 柱P'とする。 同様に, 円筒Qに底面をつけてできる円柱形の立体を円柱とみなし, これを円柱Q′ とする。このとき,円柱Q′の体積は円柱P′ の体積の 図4 C C D • II D ⑥ にあてはまる数字をそれぞれマークせよ。 倍になる。 F F E E

回答募集中 回答数: 0