学年

教科

質問の種類

数学 中学生

数学自体が嫌いすぎて分からないので、教えてくださいm(_ _)m

9 1次関数 中学で学習したこと チェックコーナー 1 1次関数 1次関数 y=-2x+5 について (1)x=4 に対応するyの値は[-3]。 (2) 変化の割合は [2] (3) xの増加量が3のときのyの増加量は [-6]。 (4)xの変域が2x3のときの yの変域は[-1 2 1次関数のグラフ ≦910 1次関数 y=-2x+5のグラフは, B 変化の割合が1 ポイント 1次関数の表, 式, グラフ x ...-2-1 0 1 2 y ... 9 7 5 3 1 ... x=0 のときの yの値 xが1増加した ときのyの増加量 y=-2x+5 変化の割合 2 3 傾き 直線の式は y=- とmと 4との交点を A,直線1,”とx軸との 交点をそれぞれB,Cとする。 次の問に答え 右の図で、直線の式は y=2x-1, みたす1次 次関数を求めなさい。 次の条件をみたす で,x = -4 のとき y=7 グラフが2点(2)(3)を通る。 グラフが点(4, 1) を通り, 直線 y=-2x-4 に平行 く傾きがmなら、 式を y=mx + b と おき、点の座標 が(p,g)なら x=D.y = q この式に代入 して,bの値を 求める。 <(3) 平行な直線 は、傾きが等し い。 -x+2 である。 直線 (1) 傾きが[ 2 ], 切片が[ 5 ]。 (2) 右へ進むと, 上へ ] 進む 切 (3) グラフは [ 右]下がりの直線。 46 1次関数y= - x-1 について,次の間に答えなさい。 3 2 (1)この関数のグラフの傾きと切片を求 めなさい。 (2)この関数のグラフをかきなさい。 (3)xの変域を 1 <x<4 としたとき のyの変域を求めなさい。 (4) このグラフをy軸の正の方向に3平 行移動させた直線の式を求めなさい。 0 5 < 1次関数 y=ax+b 傾き 切片 なさい。 点Aの座標を求めなさい。 2) △ABCの面積を求めなさい。 O /B 直線1mの交 点だから、1,m の式を連立方程 式として解いて 求める。 < (4) では,平行移 動させても傾き は変わらない。 グラフ上の各点 は3だけ上に移 動する。 50 して、時速4km で歩いて図書館に向 兄は, 家から2km離れた図書館に自転車で行き, 図書館で本を借りて から同じ速さで家に戻った。 弟は, 兄が家を出発してから15分後に家を出発 y(km) 47 右の図の直線(1)(2)(3)の式を求 かった。右のグラフは, 兄が家を出 発してからx分後の家からの道のり ykmとして, 兄の進むようすを 2 1 (1) (3) 傾きを調べるに -5- めなさい。 は、 x 座標, y 座 標がどちらも整 表したものである。このとき,次の 問に答えなさい。 0 10 20 30 40 50 (分) 数になる2点を 考えるとよい。 0 5 (1) 兄の自転車の時速を求めなさい。 (2) 兄と弟がすれ違うのは, 家から何kmの地点か, 求めなさい。 弟の進むようす を表すグラフを かき入れる。 コーナー (1)-3-(2)-2(3)-6(4)-Sys 2 (1)-2, 5 (2)-2 (3)

未解決 回答数: 1
数学 中学生

2番の⑵と⑶の解説をお願いします

step.A 時間と いとさんに して、途中 まで行き いとさ/ 分の家: とりの の図の 点 34 一次関数 p.86-p.87 step.AC 9.86 れいとさんは、午前10時に自分の家を出発 して、途中にある図書館で本を借りてから、 駅まで行きました。 れいとさんが家を出発してから分後に、 自分の家からmの地点にいるとして、 との関係をグラフに表すと、 次の図のようになりました。 C地点・・・ 1000] 駅 点・ 図書館 B地点 600 500 300+ A地点 0 3 5 10 15 家 (午前10時) IC 2時間と道のり p.801 において, れいとさんの弟は、 午前10時8分に駅を出発して、図書館の前 を通って歩いて家まで帰ることにしました。 7 Alim 弟は、駅を出発してから5分後に、 駅から300m離れた花屋の前を通りました。 午前10時1 弟の歩く速さは一定であると考えて 次の問いに答えなさい。 (1)弟が図書館まで進んだとして 弟が進むようすを表すグラフを, P801 の図にかき入れなさい。 「家からの道のりは 1000-300-700 午前10時8分に駅にいるz=8のときg=1000 午前10時13分に花屋の前にいる x=13のとき=700 図書館はれいとさんの家から600mの地点に よって 2点 (8,1000). (13.700) を通る直線となる。 あるので, グラフの変域は, 6001000 1 姉と弟 同じ通 から 自宅へ 再び 姉が から グラ 75 3 (1) (1) れいとさんの家から図書館までの 道のりは何ですか。 図書館にいた間は、進んだ道のりは変わらない。 グラフで、xの値が変化しても 図書館の位置である。 の値が一定のB地点が 600m (2) れいさんが自分の家を出発してから 3分後にいる地点から, 駅までの道のり は何ですか。 →x = 3 =3のときのの値を読みとると. y=300 家から駅までは1000mなので 1000-300-700 (3) れいとさんが上のグラフの B地点とC地点の間にいるときの, 700m (2)についてとの関係を式に表しなさい。 ただ変域は考えないものとします。 グラフは、右へ進むと下へ300進むから、 -300 5 傾きは, = 60 求める一次関数の式を,y=-60x+b とすると、この直線は,点(8, 1000)を 通るから, 1000=-60×8+b b=1480 y=-60x+1480 (3) れいさんと弟がすれちがったのは 午前何時何分ですか。 また、 れいとさんの家から何mの地点ですか。 xとyの関係を, xの変域をつけて 式に表しなさい。 グラフは、右へ進むと上へ400進むから, 400=80 一傾きは, 5 求める一次関数の式を, y=80x+b とすると、この直線は,点(10,600)を 通るから, 600=80×10+b | y=80x-200 ......① y=-60x+1480 ...... 2 ①を②に代入すると, 80x-200=-60x+1480 140x=1680 x=12 x=12を①に代入すると, 時刻 y=80x12-200=760 午前 10 時12分 b=-200 y=80x-200 (10≦x≦15) 地点 れいとさんの家から760mの地点

未解決 回答数: 1