学年

教科

質問の種類

数学 中学生

(3)Bさんの式をグラフに表すとどうなりますか?

一次関数と方程式 (福岡) 東西に一直線にのびたジョギングコース上に, P地 2400% 点と, P地点から東に540m離れたQ地点と, Q地点 から東に1860m離れたR地点とがある。 Aさんは, このジョギングコースを通ってP地点とR地点の間を 1往復した。 Aさんは, P地点からQ地点まで一定の速さで9分 間歩き, Q地点で立ち止まってストレッチをした後, R地点に向かって分速 150mで走った。 Aさんは,P 地点を出発してから28分後にR地点に着き、 すぐに P地点に向かって分速150mで走ったところ, P地点 を出発してから44分後に再びP地点に着いた。 Q 540円 0 9 28 44 図は,AさんがP地点を出発してからx分後にP地点からym離れていると するとき, P地点を出発してから再びP地点に着くまでのxとyの関係をグラ フに表したものである。 次の問いに最も簡単な数で答えよ。 (1) AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何m か求めよ。 (1) 分速 60 m 540mの距離を9分で歩いているから, 540÷9=60(m/分) 1860~150mmで走った時間 (2) 15 分 36 秒後 (2) AさんがQ地点からR地点に向かって走り始めたのは, P地点を出発してか ら何分何秒後か求めよ。 (3) 1800 m 1860 78 3 28- 3 -=150(分) 3 1分=60秒x=36秒 じゃん = 150 5 (3) Bさんは, AさんがP地点を出発した後しばらくして, R地点を出発し,こ のジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。 Bさんは, P地点に向かう途中で, R 地点に向かって走っているAさんとす れちがい,AさんがP地点を出発してから39分後に, P地点に向かって走っ ているAさんに追いつかれた。 AさんとBさんがすれちがった地点は, P地点から何m離れているか求め よ。 BさんがAさんに追いつかれた地点=Aさんが出発してから39 分後 にいる地点→44分後にP地点に着いたから、 P地点から5(分)×150(m/分)=750 (m)の地点。 BさんがR地点からP地点に向かうときの式は,y=-70x+αで, 750=-70×39+aa=3480より,y=-70x+3480X AさんがQ地点からR地点に向かうときの式は,y=150x+bで, 2400=150×28+b b = -1800 より,y=150x-1800 2人がすれちがったのは, -70x+3480=150x-1800 これを解いて, x=24より, Aさんが出発してから24分後。 (2) Q地点からR地点まで 走った時間は1860 150 =12.4(分)=12分24秒。 この時間を到着した28分 後から引く。 (3) Aさんが出発してから 24分後の位置は, 150×24-1800=1800(m) より, P地点から1800m の地点。

回答募集中 回答数: 0
数学 中学生

出来たら全部解説お願いしますm(_ _)m

★ 1 y=-2x2 について, 次の問いに答えなさい。 (1)xの変域が-3≦x≦-1 のとき, yの変域を求めなさい。 (2)xの変域が −2≦x≦4 のとき,りの変域を求めなさい。 2 右の図のような長方形ABCDの頂点Aにある2 点P, Qが,点Aを同時に出発し, PはA→B→Cに 沿って1cm/秒, QはA→D→Cに沿って2cm/秒 の速さで頂点Cまで向かう。 A D Q 6cm B 8cm-----C (1) 0≦x≦4 のとき, x秒後の△PAQの面積を ycm2として,yをxで表しなさい。 ★ (2) 4≦x≦6 のとき, x秒後の△PAQの面積 ycm² をxで表しなさい。 3 右の図のように,放物線y=x2 ① と直線 y=x+2 ...... ② が2点A, Bで交わっている。 (1) 2点A,Bの座標を求めなさい。 じく (2)直線②とx軸の交点をCとするとき,比 CA: AB を求めなさい。 F010) (S) y=x2yy=x+2 A 2 3 -X ④ 右の図のように,関数y=-x^のグラフ上に, x座標がそれぞれ-4, 2となる2点A, B をとる。 (1) 直線 AB の式を求めなさい。 (2) y=1/2x2(-4<x<2) のグラフ上に点Pをと り,△OCP の面積が△OABの面積の1/3になる ようにしたい。 点Pの座標を求めなさい。 ヒント ---- A y B x 2 〔新潟一改〕 ② (1) AP=x, AQ=2x であることに注意する。 (2)底辺を AP=x とすれば, 高さは一定になる。 [3] (1) まず, 方程式 x2=x+2 を解く。 [4] (2)△OAB の面積を求めてもよいが, △OAB=△OCB×3となることを用

回答募集中 回答数: 0
数学 中学生

【大至急 一次関数の利用】(2)の②がわかりません。 詳しい解説お願いします🙇🏻‍♀️

3 A町とD町の間を2台のバス, gが往復しています。 図1のように,A町バス停とD 町バス停の間に,順にB町, C町のバス停があり, A町バス停から8000m離れたところ B町バス停があり、その間にE地点があります。 B町バス停から7000m離れたところ C町バス停があり,さらにC町バス停から5000m離れたところにD町バス停がありま す。ただし,A町,B町,C町, D町のバス停とE地点は,一直線の道沿いにあり,2 台のバスは,それぞれこの道を移動することとします。後の(1),(2)の各問いに答えな さい。 図 1 am 8:4 A 町 84~2 E地点 B町 8000m CHT DHJ -7000m 5000m (1)バス』はA町バス停を午前8時に出発しました。 A町バス停からxm離れたところにあ るE地点までは分速600mで進み,E地点を通過すると同時に分速500mで進み, B町バス 停には午前8時14分に到着しました。 xの値を求めなさい。 14 600×14= 2400 (2) バスカはB町バス停に午前8時14分から何分間か停車し, その後一定の速さでC町バ ス停に進み, C町バス停でも何分間か停車しました。 図2は、バスの移動のようすに ついて,午前8時x分のA町バス停からの距離をymとして,xとyの関係をグラフに表 したものです。 ただし,グラフではバスがB町バス停に着いてからC町バス停を出発 するまでの移動のようすを示しています。 後の①、②の各問いに答えなさい。 図2 (m)y 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 10 20 x 30 30 分 (分)

回答募集中 回答数: 0
数学 中学生

解き方わからないので教えて欲しいです

ートテスト④ (2次関数)を以下の日程で行います。 全クラス 期末テスト後最初の授業 (2次方程式と一緒にやります) 追試 22日 (金) 放課後3-3 問題は以下の通りです。 2学期の成績は、 レポートテスト次第 3/4 1. 関数y=ax2 のグラフの特徴を2つあげなさい。 どの2つをかいてもよい。 (完答1点) 2.2次関数y=2x24x+3のグラフの書き方。 (1点×2) ※既習事項を生かしての穴埋めになっていますが、 グラフの書き方を調べておきましょう。 3.図の長方形ABCD は、 AB=4cm、AD=2cmであり、 辺AB, CDの中点をそれぞれE,Fとし、線分 E Fをひく。 2点P,Qは、同時にAを出発し、Pは毎秒1cmの速さで辺上をA→E→B→Cの順に動き、 Cで停止する。 Q は毎秒1cmの速さで辺や線分上をA→D→F→Eの順に動き、Eで停止する。 P, Qが出発してから秒後の三角形APQの面積をcmとして、その変化の様子を調べる。 次の問に 答えなさい。 ただし、3点A, P,Qが一直線上にあるとき、 = 0 とする。 (1点×4) (1)x=3のとき、 の値を求めなさい。 (2)≦x≦6のとき、y=0のとき、x=t である。tの値を 求めなさい。 (3) 4≦x≦tのとき の式で表しなさい。 (4)P,Q が出発してから停止するまでの、との関係を表す グラフを図にかきなさい。 D 1 E 1.3はについては、まったく同じ問題です!2は調べて準備しておきましょう。 4. 図のように、 △ABC と長方形 DEFGが並んでいます。 長方形を固定し、 点Cが点Fに重なる まで三角形が矢印方向に移動するとします。 三角形の動く速さを秒速1cm、 秒後の重なっている IC 部分の面積をcmとする。 このときの問題。 (1点×3) A 4cm ※(3) はこれ↓ -4cm C (E) 8cm- Acm (3) 問題の条件変更や付け加えを1つ考えて問題をつくりなさい。 また、 問題の意図や解答などを 文章や図で説明しなさい。 4は (3) はそのままです。 (1)~(2)は問題を予想しておきましょう。 L

回答募集中 回答数: 0
数学 中学生

解説お願いします

2 下の図のように、箱Aと箱Bがある。 箱Aには1,2,3の数字が1つずつ書かれた3枚のカー ドが入っている。 箱Bには1,2,3,4,5,6の数字が1つずつ書かれた6枚のカードが入っ ている。それぞれの箱から1枚ずつカードを取り出す。 そして, 箱Aから取り出したカードに書か れた数字を十の位の数, 箱Bから取り出したカードに書かれた数字を一の位の数として,2けたの 自然数をつくる。 次の(1)~(3)に答えなさい。 ただし, 箱Aからどのカードが取り出されることも 箱Bからどのカードが取り出されることも,それぞれ同様に確からしいものとする。 1 2 3 1 2 3 4 5 6 箱A (1)つくった2けたの自然数が素数となる確率を求めなさい。 箱B (2) 2けたの自然数が4の倍数となる場合と5の倍数となる場合では, どちらが起こり やすいか。 それぞれの確率を求めて説明しなさい。 初学 (3) あみさんは、箱Aに4と5の数字が1つずつ書かれたカードを1枚ずつ、箱Bに0の数字が1 つ書かれたカードを2枚追加し,それぞれの箱から1枚ずつカードを取り出した。 箱Aから取り出したカードに書かれた数字を十の位の数, 箱Bから取り出したカードに書かれ た数字を一の位の数として, 2けたの自然数をつくったとき,この数が3の倍数となる確率を求 めなさい。 08- 08 08~ ROB

回答募集中 回答数: 0