学年

教科

質問の種類

数学 中学生

例題85 (2)の解説について質問です。 なぜ場合分けの時に「0<a≦2」とおくのですか?問題文に「正の定数a」と書いてあるので0<になるのは分かりますが、なぜ≦2なのかが分かりません。

146 基本 例題 85 2次関数の係数決定 [最大値・最小値] (1) 00000 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように,定数kの値 | (1) を定めよ。 また,このとき最小値を求めよ。 (2) 関数 y=x2-2ax+α2-2a (0≦x≦2) の最小値が11になるような正の定数 a の値を求めよ。 基本 80, 82 重要 86 指針 関数を基本形y=a(x-p)+αに直し, グラフをもとに最大値や最小値を求め、 (1)(最大値)=4 (2) (最小値)=11 とおいた方程式を解く。 (2)では, 軸x=α (a>0) が区間0≦x≦2の内か外かで場合分けして考える。 HART 2次関数の最大・最小 グラフの頂点と端をチェック 重要 例題 定義域を0≤ とき、定数 この間 指針 形が変 a=0 (最大 なお, いよ 解答 関数の (1) y=-2x2+8x+k を変形すると y=-2(x-2)2+k+8 よって, 1≦x≦4においては, YA 最大 k+8 右の図から、x=2で最大値k+8 4 012 x 区間の中央の値は 1/2で あるから, 軸 x=2は区 間 1≦x≦4で中央より 左にある。 [1] a 解答 f(x) [2] a をとる。 y=f ゆえに k+8=4 線と 最小 最大値を4とおいて, よって k=-4 このとき, x=4で最小値-4 をとる。 (2) y=x2-2ax+α² -2aを変形すると y=(x-a)2-2a [1] 0<a≦2のとき, x=αで 最小値 -2αをとる。 kの方程式を解く。 は. をと [1] YA 軸 < 「αは正」に注意。 <0<a≦2のとき, 軸x=αは区間の内。 11 -2a=11 とすると α = a 2 0 2 x →頂点x=αで最小。 これは0 <a≦2を満たさない。 [2] 2<αのとき, x=2で の確認を忘れずに。 2a最小 最小値 22-2α・2+α2-2a, つまりα-6a+4をとる。 α2-6a+4=11 とすると a²-6a-7=0 [2] YA 2-6a+4 最小 a <(a+1)(a-7)=0 これを解くと a=-1,7 02 x 軸 2 <αを満たすものは a=7 の確認を忘れずに。 以上から、 求めるαの値は α=7 -2a 2<αのとき, 軸x=αは区間の右外。 →区間の右端 x=2で最 小。 線と は をと これ これ 以上 注意 問題文 f(x)= 練習 (1) 2次関数y=x2-x+k+1の1≦x≦1における最大値が6であるとき、定数 ③ 85 kの値を求めよ。 EX61 (2) 関数 y=-x2+2ax-a-2a-1-1≦x≦0) の最大値が0になるような定数 α の値を求めよ。 練習 定義 ③ 86 と

未解決 回答数: 0
数学 中学生

至急お願いします!!! この問題で間違ってるところ教えてください!! 式は気にしないでください😊

く手順 問題の意味をよく考え、何をェで表すかを決める。 問題にふくまれている数量を,xを使って表す。 3 それらの数量の間の関係をみつけて, 方程式をつくる。 ARE チェック 代金についての問題(1) ④ つくった方程式を解く。 ⑤ 方程式の解が問題に適していることを確か めて答えとする。 例題 鉛筆を5本と120円のノートを1冊買ったところ、 代金の合計は520円だった。 鉛筆1本の値段を求めなさい。 解 鉛筆1本の値段を円とすると, 5x+120=520 x円 |120円 5r=400 x=80 これは問題に適している。 00000 鉛筆1本の値段を80円とすると、鉛筆5本とノート 1冊の代金の合計は,80×5+120=520(円)となる から 鉛筆1本の値段が80円であることは、問題に 適している。 答 80円 全部で520円 確認問題1 次の問に答えなさい。 (注) 解き方を記述する場合は,「=80は問題に適している。」 (答えの確かめ) までしっかり書く。 670 □(1) 消しゴムを7個と250円の下じきを1枚買ったところ、代金の合計は670円だった。 消しゴム 個の値段を 20 45 求めなさい。 72+250 =67072=670-250=180 420 92 65=60%) □(2) ノートを6冊と100円の消しゴムを1個買ったところ、代金の合計は1000円だった。ノート1冊の値段を 求めなさい。 15 6x+100=1000=6x=1000-100=6190 [ チェック ②代金についての問題(2) 390 (L=150] 1個80円のみかんと1個130円のりんごを合わせて20個買ったところ、 代金の合計は2000円だった。 みかんと 例題」 りんごは,それぞれ何個買ったか求めなさい。 買うとすると. りんごの個数は, 20-12=8 みかん りんご 合計

未解決 回答数: 1
数学 中学生

最後がわかりません。 教えて下さい!

7 (1) 右の図のように, 放物線y=x2上に3点A,B,Cが あります。 点A,Bのx座標はそれぞれ -2, -1 で, 点Cのy座標は9です。 この放物線上にBC // ADと なるように点Dをとるとき,次の各問いに答えなさい。 点Bのy座標を求めよ。 (2) 直線BCの式を求めよ。 純子 AL B -y=x² (3) 次の純子さんとこころさんの会話文の空欄①~③にあてはまる数や式を求めよ。 D 純子 :点Dの座標ってどうやって求めたらいいんだろう? こころ: 放物線と直線の交点のx座標は, y=x2と直線ADの式の連立方程 式で解く方法が教科書の発展問題に載ってあったのを見た気がするよ。 : そんな問題, 教科書にあったかな? とりあえず, ちょっとやってみ よう。まずは直線ADの式を求めないといけないってことだよね。問 題文に「BC//AD」 ってあるから,直線ADの傾きは ① で, 点 Aを通るから,y= ② と求めることができるね。 ・・・・・答えが2つ出てきたけど,何か間違っているのかな? 四角形ABCDの面積を求めよ。 cy=9 こころ: うん, そこまでは間違っていないと思うよ。 純子 :あとは,このy= ② と y=x2を連立方程式で解くということは, x²= を解けばいいということかな。 この2次方程式を解くと こころ: 点Aと点Dの2点のx座標ということだと思うよ。 純子 : なるほど! じゃあ、点Dの座標は ③ということだね。 こころ: この連立方程式を使って解く方法は違う問題でも使えそうだから覚え ておいたほうがよさそうだね。 x

回答募集中 回答数: 0