学年

教科

質問の種類

数学 中学生

(3)Bさんの式をグラフに表すとどうなりますか?

一次関数と方程式 (福岡) 東西に一直線にのびたジョギングコース上に, P地 2400% 点と, P地点から東に540m離れたQ地点と, Q地点 から東に1860m離れたR地点とがある。 Aさんは, このジョギングコースを通ってP地点とR地点の間を 1往復した。 Aさんは, P地点からQ地点まで一定の速さで9分 間歩き, Q地点で立ち止まってストレッチをした後, R地点に向かって分速 150mで走った。 Aさんは,P 地点を出発してから28分後にR地点に着き、 すぐに P地点に向かって分速150mで走ったところ, P地点 を出発してから44分後に再びP地点に着いた。 Q 540円 0 9 28 44 図は,AさんがP地点を出発してからx分後にP地点からym離れていると するとき, P地点を出発してから再びP地点に着くまでのxとyの関係をグラ フに表したものである。 次の問いに最も簡単な数で答えよ。 (1) AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何m か求めよ。 (1) 分速 60 m 540mの距離を9分で歩いているから, 540÷9=60(m/分) 1860~150mmで走った時間 (2) 15 分 36 秒後 (2) AさんがQ地点からR地点に向かって走り始めたのは, P地点を出発してか ら何分何秒後か求めよ。 (3) 1800 m 1860 78 3 28- 3 -=150(分) 3 1分=60秒x=36秒 じゃん = 150 5 (3) Bさんは, AさんがP地点を出発した後しばらくして, R地点を出発し,こ のジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。 Bさんは, P地点に向かう途中で, R 地点に向かって走っているAさんとす れちがい,AさんがP地点を出発してから39分後に, P地点に向かって走っ ているAさんに追いつかれた。 AさんとBさんがすれちがった地点は, P地点から何m離れているか求め よ。 BさんがAさんに追いつかれた地点=Aさんが出発してから39 分後 にいる地点→44分後にP地点に着いたから、 P地点から5(分)×150(m/分)=750 (m)の地点。 BさんがR地点からP地点に向かうときの式は,y=-70x+αで, 750=-70×39+aa=3480より,y=-70x+3480X AさんがQ地点からR地点に向かうときの式は,y=150x+bで, 2400=150×28+b b = -1800 より,y=150x-1800 2人がすれちがったのは, -70x+3480=150x-1800 これを解いて, x=24より, Aさんが出発してから24分後。 (2) Q地点からR地点まで 走った時間は1860 150 =12.4(分)=12分24秒。 この時間を到着した28分 後から引く。 (3) Aさんが出発してから 24分後の位置は, 150×24-1800=1800(m) より, P地点から1800m の地点。

回答募集中 回答数: 0
数学 中学生

(3)砂糖の量を求める式が思い出せなかったらどうやってやればいいのですか?また、取り出す量を少なくしても食塩の濃度が変わらないのがどうしてなのか教えてください🙇‍♀️

( 求める最小の自然数nはn=46である。 250(g) となる。また,含まれる砂糖の量は、50× (3)<数量の計算> ①容器Aの砂糖水の濃度は 48% で, 容器 Bには8%の砂糖水 200g が入っているの で、容器Aから50gの砂糖水を取り出し, 容器Bに入れると, 容器 B の砂糖水の量は50+200 = | 学 48 100 8 100 濃度は, 40 250 x100=16(%) である。 る。また,含まれる砂糖の量は、50× 16 100 ②容器Cには1%の砂糖水100gが入っているので, 16% の砂糖水から50gを取り出し、容器Cに入れると、容器Cの砂糖水の量は, 50+100=150(g) とな 200 x = 24+16=40(g) となる。よって (a) 9 + 100x =8+1=9(g) となる。 よって、濃度は, 150 1 100 × 100=6(%) である。 ③容器 Aには 48% の砂糖水が250g入っているので、 6%の砂糖水から 50g を取り出し,容器Aに入れると、容器Aの砂糖水の量は50+250=300 (g) となる。 また、含ま 48 100 123 れる砂糖の量は、50×- 66 100 + 250x =3+120=123(g) となる。 よって,濃度は, -x100= 300 1 (%) である。 のこわら OSは約510のミツ <確率 サイコロ> 大中小3個のサイコロを同時に1回投げるとキ それぞれ6通りの目の出方が

回答募集中 回答数: 0