学年

教科

質問の種類

理科 中学生

(4)の簡単な解き方とかありますか??なかったら普通の解き方で大丈夫です!

N E 図1は,A~D地点の標高と位置関係を表している。 また, 図2は,A~C地 点でボーリング調査を行った結果をもとに地層の重なりを表したものである。この 地域の地層は,上下の逆転やずれはなく,各層は平行に重なっており、ある一定の 方向に傾いている。また,それぞれの地層には、化石は見られなかった。 図 1 地形図 ABラインは図2 -100m- 90m- B 火山灰 の 火山が噴② 1 ②たときの噴火(1) いが分かるから 35 90m 高さをかいちゃう! 10-15=55 31の 泥の層 70-1060 火山灰の層 れきの層 ° ° ° m 砂の層 (3) 10mから15m 60 [(4) 南 Yom 100m 'A B 地表からの深さ m tex Y 1080 190 600 20-70 80 50 3060- 。。 。 ° OX [m] 40-50- ° •FRe- ° -6-0 ° ° C ° ° 400 330- ° 40 50 50 55 5 -80m- 70m- .60m、 250ml 東 10mあげたらいっしょ! (1) 図2からわかるように、調査の結果,砂の層きの層火山灰の層,泥の 層の4つの層が見られた。 ① 4つの層のうち, 鍵層として利用できるのはどの層か。 ② ①のように考えられる理由を簡単に書きなさい。 (2) B地点で, れきの層の上部は,地表からの深さが何mのところにあるか。 (3) C地点で,火山灰の層は、標高何m から何mの間にあるか。 (4)この地域の地層は,北、南東,西のうち、どの方位に向かって低くなってい るか。 西4 Aとくと比べる (5) 図2のX~Zの各層を,堆積した順に並べなさい。 (6) D地点でボーリング調査をすると, 火山灰の層はどこにあるか。 解答欄の図 に斜線で示しなさい。 (6) → Z → 10 地表からの深さ m 20 深 30 [m〕 40- 50 (3

未解決 回答数: 1
理科 中学生

(6)の答えが何故これになるかが分かりません。 赤の斜線が答えです。

図1 地形図 ABラインは図2 40m 図1は,A~D地点の標高と位置関係を表している。また,図2は,A~C地 点でボーリング調査を行った結果をもとに地層の重なりを表したものである。この 地域の地層は,上下の逆転やずれはなく,各層は平行に重なっており、ある一定の 方向に傾いている。 また, それぞれの地層には、化石は見られなかった。 15X2 E 火山灰 の 火山が噴火 (1) ② 5点x 100m 90m 100m- 0 B' A 高さをかいちゃう! 10-15= 31のP -90m B 80m- 70ml C 60m_ 50m 地表からの深さ m tex ②たときの噴火の YO 1080 Z: 泥の層 70-10=60 (1) 100 60. 20-70 551 火山灰の層 いが分かるから 80 -50 (2) 30.60- 。 。。 FRO ° 。。 °° 140 ○ れきの層 6277 35 [m〕 40-50 I 。 (3) O O 60 ° 330- 50 ° 砂の層 55 40 ° 60 。 o o (3) 10mから15 (4) 50 10mあげたらいっしょ! (1) 図2からわかるように、調査の結果,砂の層れきの層火山灰層,泥の 層の4つの層が見られた。 ① 4つの層のうち, 鍵層として利用できるのはどの層か。 ② ①のように考えられる理由を簡単に書きなさい。 Q (2) B地点で,きの層の上部は,地表からの深さが何mのところにあるか。 (3)C地点で,火山灰の層は、標高何mから何mの間にあるか。 (4)この地域の地層は,北,南, 東,西のうち,どの方位に向かって低くなってい るか。 (5) 図2のX~Zの各層を, 堆積した順に並べなさい 4 Aとくと比べる D地点でボーリング調査をすると, 火山灰の層はどこにあるか。 解答欄の図 に斜線で示しなさい。 (4) 南 (5) X - 2 3 (6) 地 10 [m〕 40- 地表からの深さ m 20 30 8888 o (1) (2

未解決 回答数: 1
数学 中学生

数学自体が嫌いすぎて分からないので、教えてくださいm(_ _)m

9 1次関数 中学で学習したこと チェックコーナー 1 1次関数 1次関数 y=-2x+5 について (1)x=4 に対応するyの値は[-3]。 (2) 変化の割合は [2] (3) xの増加量が3のときのyの増加量は [-6]。 (4)xの変域が2x3のときの yの変域は[-1 2 1次関数のグラフ ≦910 1次関数 y=-2x+5のグラフは, B 変化の割合が1 ポイント 1次関数の表, 式, グラフ x ...-2-1 0 1 2 y ... 9 7 5 3 1 ... x=0 のときの yの値 xが1増加した ときのyの増加量 y=-2x+5 変化の割合 2 3 傾き 直線の式は y=- とmと 4との交点を A,直線1,”とx軸との 交点をそれぞれB,Cとする。 次の問に答え 右の図で、直線の式は y=2x-1, みたす1次 次関数を求めなさい。 次の条件をみたす で,x = -4 のとき y=7 グラフが2点(2)(3)を通る。 グラフが点(4, 1) を通り, 直線 y=-2x-4 に平行 く傾きがmなら、 式を y=mx + b と おき、点の座標 が(p,g)なら x=D.y = q この式に代入 して,bの値を 求める。 <(3) 平行な直線 は、傾きが等し い。 -x+2 である。 直線 (1) 傾きが[ 2 ], 切片が[ 5 ]。 (2) 右へ進むと, 上へ ] 進む 切 (3) グラフは [ 右]下がりの直線。 46 1次関数y= - x-1 について,次の間に答えなさい。 3 2 (1)この関数のグラフの傾きと切片を求 めなさい。 (2)この関数のグラフをかきなさい。 (3)xの変域を 1 <x<4 としたとき のyの変域を求めなさい。 (4) このグラフをy軸の正の方向に3平 行移動させた直線の式を求めなさい。 0 5 < 1次関数 y=ax+b 傾き 切片 なさい。 点Aの座標を求めなさい。 2) △ABCの面積を求めなさい。 O /B 直線1mの交 点だから、1,m の式を連立方程 式として解いて 求める。 < (4) では,平行移 動させても傾き は変わらない。 グラフ上の各点 は3だけ上に移 動する。 50 して、時速4km で歩いて図書館に向 兄は, 家から2km離れた図書館に自転車で行き, 図書館で本を借りて から同じ速さで家に戻った。 弟は, 兄が家を出発してから15分後に家を出発 y(km) 47 右の図の直線(1)(2)(3)の式を求 かった。右のグラフは, 兄が家を出 発してからx分後の家からの道のり ykmとして, 兄の進むようすを 2 1 (1) (3) 傾きを調べるに -5- めなさい。 は、 x 座標, y 座 標がどちらも整 表したものである。このとき,次の 問に答えなさい。 0 10 20 30 40 50 (分) 数になる2点を 考えるとよい。 0 5 (1) 兄の自転車の時速を求めなさい。 (2) 兄と弟がすれ違うのは, 家から何kmの地点か, 求めなさい。 弟の進むようす を表すグラフを かき入れる。 コーナー (1)-3-(2)-2(3)-6(4)-Sys 2 (1)-2, 5 (2)-2 (3)

未解決 回答数: 1
1/189