学年

教科

質問の種類

国語 中学生

答えがなくて困っています。 このテキストの6-9、14-17、18-21の答えがあったり分かったりすれば教えて欲しいです。

17 下一段・下二段 150 50 堪へ (3) (1) 動詞 ③ 16 ①まう 文献にも このようなことは、 かうし 2 反復学習で確認 1 次の傍線部①~⑤の動詞について、それぞれの活用の行種類と活用 書きなさい。 (こよなくやつれてのみこそ詣づと知りたれ。 この上なく粗末な格好で参詣するものだと(私は)知っている。 (かかることは、文にも見えず、 ③ 格子など上ぐるに見いだしたれば、 2 3点×3 (2) 〔枕〕 3 次の傍線部①~⑧のうち、下二段活用の動詞を四つ選んで番号を書き、 かつ活用の行と活用形を書きなさい。 [徒然] 〔徒然〕 蓮を 1 家にはちすを植ゑて愛せし時の楽なり。 → 賞玩した時に作った楽曲である。 〔方丈〕 〔蜻蛉〕 (1) 人数を知らんとて、四五両月を数へたりければ、 数えたところ、 亡くなった人の数を知ろうとして、 [方丈〕 〔宇治拾遺〕 さいしゅう 音に聞きめでてまどふ。 上げるので、外を見いだしたところ、 すまひ 4蹴よといひつる相撲に 蹴れと いった かぐや姫のうわさを聞いて恋い慕い、心を乱す。 積もり 消ゆる様、罪障にたとへつべし。 〔竹取〕 (4) (3) (雪が積もったり消えたりする様は、きっと人の(犯す)罪障にたとえられるだろう。 (竹取) 綱を引きすぐして網絶ゆるすなはちに、 なくなった瞬間に、 引っ張りすぎて 番号 活用の行 活用形 番号 活用の行 活用形 ● ラ行下二段活用・連用形 行 活用 形 形 サ行 終止 形 行 形 ② 活用 行 3 活用 行 行 行 形 行 形 ④ 行 形⑤ 活用 形 34点×4 行 活用 2 次の〔内の動詞は下一段、または下二段活用動詞ですが、いずれも 終止形で示しています。 それぞれを適切に活用させて書きなさい。 例 下よりきざしつはるに〔堪らずして落つるなり。 5×5 活用の種類や行が紛れやすい OKKEN すい (第2 下二段活用の動詞 〔徒然〕 う こころう ところう ま ま ま 木の下(内部)から兆しが芽ぐんでくるのに堪えられないで(木の葉が) ア行―得・心得・所得(三語) ザ行(交雑)ず(一語) だいこくでん 1 大極殿に行きてこれを〔ける]。 〔古今著聞〕 かな ひい うれ 大極殿に これを ダ行出づ奏づ・秀づ ハ行与ふ・憂ふ・数ふC かな さ ( しばし〔奏づ〕て後、抜かんとするに、おほかた抜かれず。 〔徒然〕 ヤ行ー甘ゆ・覚ゆ・消ゆ・聞こゆ・越ゆ・冴ゆ・萌ゆ・見ゆ 演じた後で、(鼎を頭から)抜こうとすると、 全く かなえ う う (3) ③ [飢う]ず、寒からず、風雨にをかされずして、徒然 ワ行ー植う・飢(餓)う・据う(三語) 飢えることなく、寒くなく、 冒されることもなく、 tintetise( 3 文章問題で定着 50 50 ※ ●語注 どこでもよい、 しばらくの間 いづくにもあれ、しばし旅立ちたるこそ、目さむる心地すれ。そのわたり、ここかしこ見ありき、田舎びたる 目がさめるような(新鮮な)気持ちがする。そのあたり、 見てまわり、 見慣れないことばかりが 多い。 所、山里などは、いと目馴れぬことのみぞ多かる。都へ便り求めてやる。 「そのこと、かのこと、便宜に忘るな。 ふみ ※びんぎ つてを求めて (その手紙に 都合のよい時に忘れるな。」 などと言い送るのは おもしろい。 そのような旅先でこそ、 など言ひやるこそをかしけれ。さやうの所にてこそ、よろづに心づかひせらるれ。持てる調度まで、よきはよく、 何事につけても自然と心遣いがされるものだ。 持っている道具類まで、 芸能のできる人や容貌のよい 能ある人、かたちよき人も、常よりはをかしとこそ見ゆれ。 P 36 ° いつもよりは興趣深く 見えるものだ。 〔徒然草・一五〕 KG 問 次の語はすべて下二段活用の動詞です。 活用表を完成させなさい。 基本形語幹行 未然形 連用形 終止形 連体形 已然形 命令形 萌ゆ ※いづくにもあれ「あれ」はラ 変動詞の命令形。 命令形の許 容・放任の用法。 ※便宜─「べんぎ」ではなく「び んぎ」と読む。都合のよい時・よ い機会、便り・手紙などの意。 能ある人ここは、芸事の能 力がある人の意。 問二 二重傍線部①~⑤の動詞について、活用の行・種類と、文中での活 用形を答えなさい。 おと ①さむる ②目馴れ ③求め ④忘る ⑤見ゆれ ふ う 失す ひい 秀づ ⑤ ③ ① さだ 定む に 逃ぐ ( 46 問三 読む 右の文章における作者の主張が最も端的に表れた一文を抜き出 して、その最初の五字を書きなさい。 6点

未解決 回答数: 0
数学 中学生

この問題の⑷の解説に  1〜16→15個  210個(全部)÷15個(1〜16)=14セットあまり7 16×14=32×7 =224 +8 A. 232 と書かれているのですが、 16×14はどーやってで... 続きを読む

5 下の図は,1から300までの番号が1つずつ書いてある 300枚のカードに,次のような手順で印をつけたも のである。まず,番号が2の倍数であるすべてのカードに1個ずつつける。次に、番号が4の倍数であるすべて のカードに1個ずつつける。さらに,番号が8の倍数であるすべてのカードに1個ずつつける。最後に,番号が 16 の倍数であるすべてのカードに1個ずつつける。このとき、次の1~4の問いに答えなさい。 (SC) 1 2 3 4 5 6 7 8 うる 20.24. 問1 番号 16 のカードには,●印が何個ついているか。 2→14→18→1,16→1 ① 300] : OL 問2印がちょうど3個ついているカードのうち、番号が小さいほうから数えて2枚目のカードに書いてある番 号を答えよ。 (2) (3) (ma) OL (3) OR 問3 ●印がちょうど3個ついているカードのうち, 番号が小さいほうから数えて4枚目のカードに書いてある番 号を, a を用いて表せ。 の仕切りで、 一定の ただし、仕切りの厚さは考えない 問4番号が1からnまでのn枚のカードについている●印の総数が,217個であった。 このとき, nの値を求め ただし, nは偶数とする。 (cm)

解決済み 回答数: 1
数学 中学生

この問題の⑵⑶を分かりやすく教えてください!! ちなみに答えは⑵21分の5        ⑶11,21分の10 です。 ※実力テストの問題なので、書き込みしてありますが  全く関係ないので、気にしないでください!

3 図のように、1から12までの数を1つずつ書いた12個の球 ① ② ③ ⑩ と A,Bの2つの箱がある。 太郎さんと花子さんが次の規則で行うゲームを考えた。 次の問いに答えなさい。 <規則 > ア最初に, Aに奇数を書いた6個の球を入れ, Bに偶数を書いた6個の球を入れる。 イ太郎さんがAから球を1個取り出し, その球をBに入れる。 ウ次に, 花子さんがBから球を1個取り出し, その球をAに入れる。 の水の布! エイ, ウのあと, Aに入っている球に書かれた数の合計を太郎さんの得点, B に入っている球に書かれた 数の合計を花子さんの得点とし,得点の大きい方の勝ちとする。ただし、2人の得点が同じ場合は引き分 けとする。 (1) このゲームで、はじめに太郎さんが球 ⑤を,次に花子さ 太郎 んが球⑥を取り出したとき,2人の得点はそれぞれ何点か, 花子 ① 3 5 ①→36 37 10 2 4 6 8 1 1->42 41 求めなさい。 A B (2) このゲームで,太郎さんが勝つ確率を求めなさい。 3. 5 18 1 〃 36=12 未満 x+x+x@xoxo 水 5 120 121 363 ++ (4) (3) (2)から、このゲームは太郎さんが不利であることがわかった そこで, Aに入れる球に書かれた数の合計と, B に入れる球に書かれた数の合計を同じにするために, Aに入れる6個の球 のうちの1個を6大きい数に書きかえてからゲームを行うことにした。球①の数を7に書きかえた場合と, 球 ①の数を17 に書きかえた場合では,どちらの方が太郎さんの勝つ確率が大きくなるか、解答欄に合わせて① か ①かを書き,そのとき の太郎さんの勝つ確率を求めなさい。 まで ABから同

解決済み 回答数: 1
数学 中学生

(a)の問題と(b)の問題が分かりません。 2つともかっこを使わないもっとも簡単な式で答えればいいです。 (a)の答えはy=90x-560です。 y=90xまでは分かるのですが、なんで-560になるか分かりません。 (b)の答えはy=-100x+3000です。 おねがい... 続きを読む

さんの家からBさんの家までの道のりは2500mで,その途中には公園があり,Aさんの の道のりは1600mである。 AさんはBさんの家へ行くために午前9時に家を出発し, 20分 春ち合わせ場所である公園に着いた。 BさんはAさんを迎えに行くために, 午前9時15分に家 出発して公園へ向かった。 Aさんは公園でBさんを数分間待ち, Bさんが着くとすぐに分速 90 で歩いて, 午前9時34分にBさんの家に着いた。 下の図は、Aさんが家を出発してからx分後のAさんの家からAさんがいる地点までの道のり ymとして,Aさんが家を出発してから公園に着くまでのxとyの関係をグラフに表したものであ このとき、下の会話文を読み, あとの(1)~(4)の問いに答えなさい。 会話文 (m) y 2600 2400 2200 2000 560 A 2,500円 1,600m x1 80m 1800 0 1600 1400 1200 1000 800 600 20分 9分 1600 400 09 200 80 X C 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 (分) 29 1600 160 生徒X: Aさんは家を出発して20分後に公園に着いているから, Aさんが公園まで歩いた速 さは分速はひです。 生徒Y:Bさんを待った後は, Bさんの家まで分速90mで歩いています。 このときのAさん です。 y=90x-560 のグラフの式は (a) 教師T:そうですね。 Aさんが公園でBさんを待っていたのは何分間でしょうか。 生徒X:2人で公園からBさんの家まで歩いたときにかかった時間を考えると、公園を出発 した時刻がわかります。 生徒Y:Aさんが公園でBさんを待っていたのはふ分間です。 教師T:そのとおりです。 では,Bさんが午前9時5分に家を出発して, 分速100mでAさん 1600m の家に迎えに行く場合の2人が出会う時刻を考えてみましょう。 生徒X:この場合,Bさんは午前9時20分より前に公園を通り過ぎています。 生徒Y:Aさんが公園に向かっているときに2人は出会いますね。 2500円 生徒X : Aさんが家を出発してからx分後のAさんの家からBさんがいる地点までの道のりを ym とすると,Bさんが午前9時5分に家を出発して, 分速100mでAさんを迎えに 行くときのグラフの式は(b) となります。 この式とAさんが家を出発して公園まで 歩くときのグラフの式を連立方程式として解けば、2人が出会う時刻が求められます。 教師T:そうですね。2人がそれぞれの家を出発してからのxとyの関係を表すグラフをかく と考えやすいですよ。

解決済み 回答数: 1
1/1000