学年

質問の種類

数学 高校生

この極大値と極小値求めてるやつって、どこに代入してるんですかー、? 全然同じ数字になりません

72 定積分で表された関数の極値と最大 (1) f(x) = ∫(-3t+2at+3b) dt の両辺をxで微分して -1 f(x)=3x²+2ax+3b A (2)関数 f(x) は x=-1 および x=3 で極値をとるから, f'(x) = 0 は A a を定数とするとき, xで微分すると,g(x)となる ⒷB f(x)=0 が関数 f(x)が で極値をもつための必要 あることを利用する。 x=-1, 3を解にもつ。 ← B 3a a =-1+3 解と係数の関係により -b=(-1)x3 これより α = 3,b=3 このとき f(x)=3x²+6x+9=-3(x+1)(x-3) また f(x)=(3+6t+9)dt = |-c+30°+9t_ 3t2. -1 =-x+3x2+9x+5 であるから, 関数 f(x) の増減表は次のようになり, x=-1 および x=3で極値をとり、適する。 C したがって a=31, b=31 X -1 ... 3 ... f'(x) 0 + 0 極小 f(x) 7 極大 D 0 32 ☆ よって, f(x)は,x=3のとき極大値5をとり, x=-1 のとき極小値」2 a=3,b=3 が十分条件でお ことを確かめた。 D a 定数とするとき Lg (0) dt = 0 a,b,cは また、 (x-a)(x- f(x)=x となる。 ⑩ + y=f(x) a 2次方程式 f(x) 極値 O の解 以下 (1) p>0. 2次方程 の a+ ② a+ また、 の a< さらに, であることを利用して, 極 (0 (3) (2)よりy=f(x) のグラフは, 右の図 のようになる。 YA f(-1)=(-31+6+ の 32 y=f(x) =0 0≦x≦k において, M = 32 となるよ と求めてもよい。 0 0 ② a こうなんの値の範囲は≧3 Point (2) p<0. 次に,f(x) = 0(x>0) となるxの値 を求めると (1)と同 5 0 3 5 x である の -x +3x²+9x +5 = 0 x³-3x²-9x-5=0 (x+1)(x-5)=0 Point の x>0より x = 5 ( a 図り,0≦x≦において,m≧0となるようなkの値の範囲は≧52 Point 定義域が変化する関数の最大値、最小値を考えるときは,グラフをかい て考えるようにしよう。 また、3次関数 f(x) がx=αで極小 (大) 値 をとるとき,f(x)-f(a) は (x-α) で割り切れる性質を利用して,極 小 (大)値と同じ値をとる x = α以外のxの値を求めることができる。 解 合 f(x) f(x)=x 130

解決済み 回答数: 3
数学 高校生

解説をみてもよくわかりません 解説お願いします

-20 基本例 例題 54 平面上の点の移動と反復試行 右の図のように,東西に4本, 南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点P を通る確率を求めよ。 ただし,各交差点で, 東に行くか, 北に行くかは等確率と し,一方しか行けないときは確率1でその方向に行くも のとする。 A 基本 52 重要 55 指針 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から, これは,どの最短の道順も同様に確からしい場合の確率で,本間は道順によって確率 5C2X2C2 7C3 とするのは誤り! 00000 P B 重要 右図の 出たら 別に 「たら れぞ Aは う確 金 が異なる。 例えば, A111→ →→P→→ Bの確率は C D P B 11 1 ・1・1・1・1= 222 A→1→11P 11 Bの確率は 111 11 1 ・1・1= A 2 2 2 22 32 XUS したがって,Pを通る道順を, 通る点で分けて確率を計算する。 右の図のように,地点 C, D, C′', D', P'をとる。 解答 P を通る道順には次の3つの場合があり,これらは互いに 排反である。 D P B C D' P' [1] 道順 A→C→C→P この確率は 1/2x/121x1/2×11=(1/2)=1/1/2 A [2] 道順 A→D→D→P この確率は sc.(1/2)(1/2)x1/2×1=3 (1/2)=1/4 3 16 [3] 道順 AP′'→P [1] ↑↑↑→→と進む。 [2] ○○○と進む。 この確率はC(1/1) (12/12 × =6 6 2 32 よって、求める確率は 1 3 6 + 16 8 16 32 32 ○には,1個と 12個が 入る。 [3] 〇〇〇〇と進む。 ○には、2個と12個が 2 入る。 練習 右の図のような格子状の道がある。スタートの場所か ③ 54 端で表が出たときと,上の端で裏が出たときは動かな いものとす み,裏が出たら上へ1区画進むとする。ただし,右の 表が出たら右へ1区画進 ら出発し,コインを投げて, ゴール A 解答

回答募集中 回答数: 0
数学 高校生

(2)の問題がわかりません。 散布図は、1に近いので正の相関は、わかりますが、図の書き方がわかりません。なので➃か⑥で迷いました。 あと、ケの範囲はどう求めますでしょうか? 教えていただきたいです。🙇‍♀️

9 8/6/ Ex 14 データの相関関係 男女5人ずつが, 国語と数学のテ 制限時間 15分 男子 女子 ストを受けた。 国語 45 37 39 31 23 33 35 46 41 29 (1) 男子の国語の点数の平均値は 35点 分散は56 であり, 男子 の数学の点数の平均値は アイ点,分散はウエである。 また, 男子の国語と数学の 点数の相関係数は オカキである。 ただし, 小数第3位を四捨五入して小数第2位 まで答えよ。 数学 34 32 31 30 23 25 32 38 40 25 (2)男女10人の国語の点数をx, 数学の点数をyとし,x,yの相関係数をrとする。 x, yの散布図として正しいものは ク |,rの範囲として正しいものは ケ である。 ク ケ には,当てはまるものを,下の①~⑥のうちから1つずつ選べ。 -0.9 <r <-0.7 ① -0.5 <r <-0.3 ② 0.3 <r<0.5 0.7 <r < 0.9 ④ 45 ⑤ 45 ⑥ 45 40 35 40 40 8.0 35 0 35 y 30 25 + • 20 y 30 30 25 25 • 20 20 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 解答 (1) 数学の点数の平均点は (34+32 +31 +30 +23) アイ [30] 基本 14-1 5 よって、 数学の点数の分散は -{(34-30)'+(32-30)'+(31-30)'+(30-30)+(23-30)^} 5 1 70 ウエ (16+4+1+0+49)= = 5 5 国語と数学の点数の共分散は 1/ -{(45-35)(34-30)+(37-35)(32-30)+(39-35)(31-30) +(31-35)(30-30)+(23-35)(23-30)} 132 = ~ ( 40+4+4+0+84) = -=26.4 1に近い 5 5 26.4 26.4 オカキ ゆえに、相関係数は =0.942≒ +0.94 ○ 基本 14-2 √56×√14 28 (2)正しい散布図は’④ 更に、この散布図から, xとyの間には強い正の相関があること が読みとれる。 したがって, rの範囲として正しいものは ○基本 14-3 解法の思考回路 数学の点数の平均値,分 散を求める。 相関係数を求めるために, 国語と数学の点数の共分 散を求める。 散布図の特徴から, 相関 係数の値の範囲を絞りこ む。 データの分析

未解決 回答数: 1
1/1000