学年

教科

質問の種類

数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

解説の意味がわからないので教えて欲しいです

問題 右の図Ⅰは,太郎さんの家の風呂を描いたもので,内側は図II のように直方体ABCD-EFGH から直方体 IJKL-MNGH を除いた 形をしている。底面 EFNMと平面 IJKL は平行になっており,底 面 EFNMを底面 Pとする。この風呂に,一定の割合で水を入れ, 20分後に水を止めた。 水を入れ始めてからx分後の底面Pから水面 までの高さをycm とする。下の表は,このときのxとyの関係を 表したものである。ただし,底面Pと水面はつねに平行になっている ものとする。 AB=65cm,BC=105cmのとき,線分 JKの長さを底面P 求めなさい。 E F ( 宮城県 ) x (57) y(cm) 0 よって, JK=QK×7-4 0 4 14 8 28 (解 右の表より,水を入れ始めて8分~12分の間に, 風呂の1段目から2段目に水が入ったことがわかる。 一方,その前後を比べると, 1段目は毎分 3.5cm, 2段目は毎分2cm の割合で水位が増加している。 水量一定で、1段目と2段目は奥行きも等しいので, 12 40 x (5) y (cm) 16 48 0 0 単位時間あたりの水位の増加量は横の長さに反比例する。 右の図より, FN: QK =2:3.5=4:7 ×7=4=105×2=45 20 56 14 45cm (図I) 太郎さんの 家の風呂 4 4 4 4 (図ⅡI) 風呂の内側 A D B IL M N 4 8 12 14 28 40 48 B 16 20 56 14 12 8 8 毎分2cm 増 J Q 毎分3.5cm 増 F K N C K G 中2で習う分野 次関数

回答募集中 回答数: 0
数学 中学生

3番教えて頂きたいです!

右の図1のように, 台形ABCDと長方形EFGH がある。 台形ABCD は, 1辺が8cmの正方形 ABID と, <CID=90°の直角二等辺三角形CDI に分けることができる。 また, AB=EF,BC=FG である。 右の図2のように, 台形ABCDと長方形EFGH を,4点B,C,F,Gがこの順に直線ℓ上にある ように置く。長方形EFGHを固定し,台形 ABCD を直線ℓにそって矢印の方向に毎秒2cm の速さで平行移動させ,点Cが点Gと重なった ときに停止させる。 ASTA JNetis B F IC 点Cが点Fと重なったときからx秒後の台形ABCDと長方形EFGHが重なった部分の面積を ycm² とする。 このとき,次の(1)~(3) に答えなさい。 ただし, 台形ABCDと長方形EFGHは同じ平面上にあり, #100101-20 直線lに対して同じ側にあるものとする。〈京都〉 (1)x=3のときのyの値を求めなさい。 また,x=5のときのyの値を求めなさい。 (各5点) ABCDの映像 図1 A (ア)xに比例する 13 (ウ)xに比例しないが,xの一次関数である A(オ)の関数ではない B 図2 A D D E F E (イ)xに反比例する (エ)xの2乗に比例する H G H TOM (2) 次の文章は,xとyの関係について述べたものである。 文章中の ① ②に当てはまるも のを,下の(ア) ~ (オ) からそれぞれ1つずつ選びなさい。 (各5点) 0≦x≦4のとき,yは①。また,4≦x≦8のとき,yは② G () TESTEJA >$2001 - * (A) の点 AP 垂直な直線が、辺ABま をQ、辺BCまたはCDと (3)の値が2から3まで増加するときのyの増加量の6倍が,xの値が3から4まで増加するときのy の増加量と等しくなる。このときのαの値を求めなさい。 (10点) 0x12のときは0とする

回答募集中 回答数: 0
1/11