学年

教科

質問の種類

数学 中学生

(2)のiii)を詳しく教えてください! 答えは④8 ⑤5 ⑥5です お願いします🙇‍♀️

①) ACDF △EHFであることを次のように証明した。 句を,後の【語群】 ア〜ケからそれぞれ一つずつ選び、その記号をマークせよ。 [証明] △CDFと△EHFにおいて 仮定から <CDF = 4① =90°. 平行四辺形 CDEFの向かい合う角の大きさは等しいから 4② = <FEH Ⅰ Ⅱより, ③がそれぞれ等しいから ACDFAEHF 【語群】 ア CFD オ EHF キ 3組の辺の比 イ DFH カ EFH ウ FCD I FHD ク 2組の辺の比とその間の角 図 4 C ii) ADFHの面積として正しいものを,次のア~エから一つ選び, その記号をマークせよ。 ア 10√5cm² イ 20cm² ウ 25cm² エ 40cm² U II D にあてはまる記号や語 ii) 平行四辺形の紙を2枚ずらして重ねて,それを 巻いて芯をつくることで、芯の強度を上げること ができる。 図4の平行四辺形 CD'E'Fは、図3の平行四 辺形 CDEF と, 平行四辺形CDEF と合同な平 行四辺形 C' D'E'F' とを CC' =3cm となるよう にずらして重ねてつくったものである。 この平行 四辺形 CD'E'Fを、 辺CFと辺D'E' がそれぞ れ芯の口の円周となるように巻いて、芯の口の円 周の長さが辺CFの長さに等しい円筒をつくり、 この円筒をQとする。 円筒Pに底面をつけてできる円柱形の立体を, その内部が空洞でないと考えて円柱とみなし, 円 柱P'とする。 同様に、円筒Qに底面をつけてできる円柱形の立体を円柱とみなし, これを円柱Q' とする。このとき,円柱Q'の体積は円柱P′ の体積の ⑥にあてはまる数字をそれぞれマークせよ。 ケ 2組の角 倍になる。 F E E'

回答募集中 回答数: 0
数学 中学生

(2)のiii)がわからないので詳しく教えてください! 答えは④8 ⑤5 ⑥5です よろしくお願いします🙇‍♀️

i) ACDF △EHFであることを次のように証明した。 ①~③ にあてはまる記号や語 句を,後の【語群】 ア〜ケからそれぞれ一つずつ選び、その記号をマークせよ。 [証明] △CDFと△EHFにおいて 仮定から ∠CDF = < ① = 90° 平行四辺形 CDEF の向かい合う角の大きさは等しいから ② =∠FEH ③ がそれぞれ等しいから ACDFAEHF Ⅰ Ⅱより、 【語群】 アオキ ア CFD EHF イ DFH カ EFH キ 3組の辺の比 ウ FCD エFHD 2組の辺の比とその間の角ケ 2組の角 ク ・・・I ii) △DFHの面積として正しいものを,次のア~エから一つ選び, その記号をマークせよ。 ア 105cm² イ 20cm ² ウ25cm² I 40cm² ii) 平行四辺形の紙を2枚ずらして重ねて, それを 巻いて芯をつくることで、芯の強度を上げること ができる。 図4の平行四辺形 CD'E'Fは、図3の平行四 辺形 CDEF と, 平行四辺形 CDEF と合同な平 行四辺形 C' D'E'F'とをCC' =3cmとなるよう にずらして重ねてつくったものである。 この平行 四辺形 C D'E'Fを、 辺CFと辺D'E' がそれぞ れ芯の口の円周となるように巻いて, 芯の口の円 周の長さが辺CFの長さに等しい円筒をつくり, この円筒をQとする。 円筒Pに底面をつけてできる円柱形の立体を, その内部が空洞でないと考えて円柱とみなし, 円 柱P'とする。 同様に, 円筒Qに底面をつけてできる円柱形の立体を円柱とみなし, これを円柱Q′ とする。このとき,円柱Q′の体積は円柱P′ の体積の 図4 C C D • II D ⑥ にあてはまる数字をそれぞれマークせよ。 倍になる。 F F E E

回答募集中 回答数: 0
数学 中学生

小6算数です わからないらしいので教えてください🙇

見方・考え方 見方・考え方 38 円周の長さを調べよう 直径10cmの円と、その中にぴったり入る円と円ウがあり ます。円と円ウの直径の長さを変えても、円の円周の長さ と、円と円の円周の長さをたした長さは、いつも等しく なります。そのわけを考えます。 ①は各15点、②は25点(100) をよりメッ ℗ 10cm ① りょうさんは、次のように説明しています。□にあてはまる数や式を書きましょ 円の円周の長さは、10×3.14で31.4cmです。 円の直径を1cmとします。このとき、円ウの直径は 10-2 cmです。円と円の円周の長さをたした長さを, xを使って式で表すと円の円周は xx3.14 cm, 円の円周は(0-20×3.14 ■cmとなります。 円と円の円周の長さをたした長さをycmとして, xとyの関係を式で表すと、次のようになります。 I cm y=x×3.14+ (10-x) ×3.14 計算のきまりから■-0)×▲=×△-●×です。 ●xの値が一のときのyの値は y=1×3.14+(10-1 ) ×3.14=1×3.14+10×3.14-1×3.14 =10×3.14=31.4 ェの値が2のときのyの値は y=2×3.14+(10-Z) ×3.14 =2×3.14+10×3.14-2×3.14=10×3.14=31.4です。 1×3.14-1×3.14 = 0 です。 りょう ② あみさんは、次のように説明しています。 続けて書きましょう。 りょうさんが説明したように、円と円の円周の長さをたした長さyは、 y=x×3.14+(10-g) × 3.14と表すことができます。 xの値が のとき、yの値はy= □ ×3.14+ (10-□) ×3.14と表すことができます 計算のきまりをつかうと. ( 10-□) ×3.14=10×3.14-□×3.14なので, y=□×3.14+10×3.14-□ ×3.14 です。 □ ×3.14-□×3.14は

回答募集中 回答数: 0
数学 中学生

見づらいかもですがここの大門4の⑧番が解説読んでも分かりません💦どなたかお願いしますm(_ _)m

4 次の間に答えなさい。 (2点×4・1点×73点×3) 思考・判断・表 ① 17²-13²を因数分解を利用して計算しなさい。 ただし、解答用紙にどのように変形をして答えを出したかがわかるように記 述しなさい。 ② x = 2.3.y=1.7のとき、xy の式の値を求めなさい。 (X+Y) (X - Y) 2.341.7 2.3-1.7 0.6 -707115x-136 4 ③ (ax+3)(5x-b) を展開したら, 35x²-13x - となった。 この定数を求めなさい。 a=17 b=4 -13× (7x+3)(52-6-28+15 35x²-7x+15g-36 ④ a,b,p,q を整数として,xの2次式x2+ax+bが, (x+p)(x+q) の形に因数分 解できるかどうかを、次のア~エの場合に分けて調べた。このとき, 因数分解で 2次式をつくることができない場合を1つ選び,記号で答えなさい。 αが偶数 αが偶数 aが奇数 ア イ αが奇数 ウ bが偶数 エ bが偶数 bが奇数 bが奇数 0 プ→5x+25 a b ⑤ 連続する2つの整数では,大きい方の整数の2乗から2つの整数の和をひいた数 は、小さい方の整数の2乗に等しいことを次のように証明した。 次のア~ウにあ てはまる式を書きなさい。 1 【証明】 大きい方の整数をnとすると, 連続する2つの整数はア n と表されるから n²=(n-1+n) _n² − ( [_ _P__]+ n ) = ア ) = n² − ( 1 ) =n²-2n+1 (n-1)² これは小さい方の整数の2乗になることを表している したがって、連続する2つの整数では,大きい方の整数の2乗から2つの 整数の和をひいた数は, 小さい方の整数の2乗に等しい。 A²1-A156 ⑥ 1辺の長さがpの正方形の池のまわりに、もののよ うな角が円の一部になったのがついている。 の道の面積をS, 道のまん中を通る線の長さを1とす。 るとき, Smal となることを証明した。 次のア~エにあてはまる式を書きなさい。 半径aの円の1つ分だから 【証明】 道の面積Sは、 縦α,分と、 S=4ap + P 道のまん中を通るのは、1辺の正方形と、 1の円周の長さのだから 半径 イ € = 4p + 2m x 1 No.2 481007/20 よって, al = a ウ 2 ① ② から, Sal ⑦ x = 16, y = 15のとき, (x-6y)(x+6y)(x-4y)(x+9y) の式の値を求めなさ 3-59-345 (1^-6 (²+2)+52) 16 -5x7 ⑧ x2+px - 18(pは整数)を(x+a)(x+b) の形に因数分解したい。 a,bを整数とするとき、考えられるpの値は全部でいくつあるか答えなさい。 18-1 ⑨ 下のように、連続した4つの自然数の種に1を加えた数は、ある自然数の2乗に なる。 no (n+1) 1×2×3×4 +1 = 25=52 シャ 11226 2×3×4×5+1=121=11² n² + 5n+b この性質の証明を利用して, 109 × 110 × 111×112+1はどんな自然数の2乗 なるかを答えなさい。 [3] (n-1)x(n+1)x+2) ウラにつ 9x10x11V12 = (n = xx (n²7²n) 00×132 =11880

回答募集中 回答数: 0
数学 中学生

問二がわかりません… 都立系(?)の問題なので受験生、都立高校の受験を受けた事がある人などが解きやすいかもです。

10分 出題パターン ある中学校の数学の授業で, Sさんが作った問題をみんなで考えた。 次の各間に答えよ。 [Sさんが作った問題] 1 図1 a, b, hを正の数とする。 D 右の図1で、四角形ABCDは, AB=acm, AD=bcmの長 a M。 方形である。 四角形ABCDの2つの対角線の交点をMとする。 右の図2に示した立体は,図1の四角形ABCDを,四角形 ABCD と垂直な方向に,一定の距離だけ平行に動かしてできた B 図2 直方体を表している。 h 点Mが動いてできた線分の長さをhcm. この立体の体積を Pcm3 とするとき,体積Pをa, b, んを用いた式で表してみよう。 マ M。 B Tさんは,[Sさんが作った問題] の答えを次の形の式で表した。 Tさんの答えは正しかった。 (Tさんの答え〉P= [問1](Tさんの答え〉の に当てはまる式を,次のア~エのうちから選び,記号で答えよ。 ア h(a+b) イ 2h(a+b) ウ abh エ 2abh 先生は,[Sさんが作った問題] をもとにして, 次の問題を作った。 [先生が作った問題] 図3 a, b, lを正の数とする。 右の図3に示した立体は, 図1の四角形ABCDを, 頂点A, B を通る直線を軸として1回転させてできた円柱を表している。 A M 点Mが動いてできた円の周の長さをl cm, この立体の体積を Vcm3 とするとき, V=ablとなることを確かめなさい。 B (問2〕 [先生が作った問題] で, V=ablとなることを証明せよ。 ただし、円周率は元とする。 ポイント) 式の利田→間

回答募集中 回答数: 0
1/3