学年

教科

質問の種類

数学 中学生

数学の高校入試過去問です❕ 不等号、小なりイコールがいまいち分かりません 2番の解説をお願いします

解き終わったら、「合格への軌跡」より到達度チェックの画面を立ち上げて, 自分の答えを入力しましょう。 間違えた問題にチェック。 【実力判定】到達度チェックの前に解き直しましょう。 ■ 次の文章を読み,下の問いに答えなさい。 (25点×4) 携帯電話の通信量を x GB, 月額利用料を円とする。 通信会社のA社, B 社は,利用料金を次のように設定している。 = (月額利用料) (基本料金) + (通信量に応じた通信料金) A社では,基本料金は一律600円であり, 通信料金は通信量 1GB あたり600円 である。 B社では,基本料金と通信料金は次の表のように設定している。 3GB 未満 基本料金 1600円 通信量 x GB に対する通信料金 3GB 以上 8GB 未満 一律1200円 400x P 8GB 以上 (通信制限が発生) 一律 3200 円 6000 5000 4000 200 2000 3200 3000 2000 1000 4800 0 4 5 6 7 8 1 2 3 X 3600 A2400 460077600 (1)A社について,yをxの式で表しなさい。 (2) B社について, 通信量が増加すると月額利用料も増加する範囲の①xの変域 X B 1200 245 A 4200 B 2400 および②yの変域を求めなさい。 35x08 ≤4≤ 3≦x≦8 2000 5000 XA2400 B2800 28004 CLA800 (3)1か月の通信量が3GBのXさん, 6GB のYさん, 8GB のZさんの3人の中

回答募集中 回答数: 0
数学 中学生

(3)②と③の問題の解き方教えてください! ちなみに答えは②√5③25/12です。 図形に色々書いてあって見ずらいかもしれませんがすみません💦

【問4】 各問いに答えなさい。 図1は、円の円周上に3点A, B, C があり, 線分AB が円Oの直径であり, AとC, BとCをそれぞれ結んだも のである。 ∠Cの二等分線と線分AB, 円0との交点をそ れぞれD, Eとする。 AC=3cm, BC=6cm とする。 (1) 図1において, ∠ABC=α°とするとき, 大きさを表す式を,次のア~エから1つ選び, きなさい。 7 (a +30) ウ (75-α) T (a +45)° I (90-a) ① 四角形 AFBCの面積を求めなさい。 (2) 図2は、図1において, 線分CE上にCB // AF となる 点Fをとり,FとA, F とBを結び, F からABに垂線 FGをひいたものである。 ② FGの長さを求めなさい。 ADCの 記号を書 SATB = 2 290 SHEN old ofor A 図2 かげ A D it old G=EXEXY 3√5 x 10 x 1/² = 9 21α= 4² 22. ỏ DOG SVE 3154²9. E 6am 9+3 9+36-² x2=45 2=3√5 [GVS B. 755 245 215 5 (3) 図3は、図1において, 線分 AE 上に CA//DF となる 点Fをとり、点と点を結んだものである。 ① △ACD △DAF は, 次のように証明することがで に証明の続きを書き, 証明を完成させ きる。 なさい。 [証明] △ACDと△DAF で, CA//DF で, 平行線の錯角は等しいから, <CAD=∠ADF ...... ① ② 線分ADの長さを求めなさい。 ③ △DFEの面積を求めなさい。 図3 191 F ADO 9+36=x2 X²=/ 45 B

回答募集中 回答数: 0
数学 中学生

すみません 早めに答えを教えていただきたいです!

17 点> D ↑ R C n² 上 4 道のり) 思考 登山口, 山小屋, 山頂がこの順に 一本道沿いにあり、登山口から山小 ア 登山口から山小屋までの間 (説明) U 2200 屋までは1320m, 山小屋から山頂ま では 880m離れています。 あやかさんは、午前8時に登山口 を出発し、この道を山頂に向かって 山小屋まで分速55mで歩いたところ, 午前9時30分に山小屋に着きました。 一定の速さで 44分間歩き, 山頂に着きました。 山頂で休憩した後,この道を山頂から 図は、午前8時から分後にあやかさんが登山口からym離れているとするとき, 午前8時から午前9時30分までのxとyの関係をグラフに表したものです。 次の(1), (2)に答えなさい。 (1)午前8時22分にあやかさんのいる地点は、登山口から山小屋までの間と,山小屋から 山頂までの間のどちらであるかを説明しなさい。 説明する際は 0≦x≦44 におけるxとyの関係を表す式を示し、 解答欄の[ あてはまるものを,次のア, イから選び, 記号をかきなさい。 1320 O ((1) 17. (2) 5) したがって,午前8時22分にあやかさんのいる地点は, A イ 山小屋から山頂までの間 44 [JC] 74 90 に (2) あやかさんの兄は、午前8時44分より後に登山口を出発し, この道を山頂に向かっ て分速 60mで歩いたところ, あやかさんが山小屋に着くと同時に, あやかさんの兄は 山小屋に着きました。 B( である。 午前8時から分後にあやかさんの兄が登山口からym離れているとするとき あや かさんの兄が登山口を出発してから山小屋に着くまでのxとyの関係を表したグラフは, 次の方法でかくことができます。 方法 あやかさんの兄が、登山口を出発したときのxとyの値の組を座標とする点を A, 山小屋に着いたときのxとyの値の組を座標とする点をBとし,それらを直 線で結ぶ。 このとき, 2点A,Bの座標をそれぞれ求めなさい。 数学 入試実戦問題 5

回答募集中 回答数: 0
数学 中学生

すみません 早めに答えを教えていただきたいです!

[動点] [思考 3 AB=24cmの正方形 ABCD があります。 図1のように, 点 P, 点Qは頂点Bを同時に 出発し, 正方形ABCDの辺上を点Pは秒速1cm, 点Qは秒速3cmで動き, 点Rは,点P, 点Qが 頂点Bを出発すると同時に頂点Cを出発し, 正 方形 ABCDの辺上を秒速6cm で動きます。 点 P, 点Qは頂点Bを同時に出発して、頂点Cへ向 かって動き, 頂点Cと重なると止まります。 点 Rは頂点Cを出発して, 頂点Dを通り, 頂点A へ向かって動き, 頂点Aと重なると止まります。 図2は, 点P, 点Qが頂点B, 点Rが頂点Cを それぞれ同時に出発してから秒後の△PQR の面積をycm² とするとき, 点 P, 点Qが頂点 B, 点 R が頂点Cをそれぞれ同時に出発してか ら,点Pが頂点Cに重なるまでのxとyの関係をグラフに表したものです。 次の (1)~(3)に答えなさい。 (1) 点P, 点Qが頂点B, 点 R が頂点Cをそれぞれ同時に出発 してから3秒後のPQR の面積を求めなさい。 (2)の変域が4≦x≦8のとき, 点 R はどの辺上にありますか。 <(1) (2) 5点×2, (3) 17点〉 図 1 (解答) 図2 点P, 点Qが頂点B, 点 R が頂点Cを 192 96 y A BP→Q→ 048 prakt 辺 D それぞれ同時に出発してから ↑ ・R C IC 24 cm (3) 2回目に△PQR の面積が 84cmになるのは, 点P, 点Qが頂点B, 点 R が頂点Cを それぞれ同時に出発してから何秒後か求めなさい。 解答は,次の |内の条件 Ⅰ 〜 条件Ⅲにしたがってかきなさい。 2 条件Ⅰ 2回目に△PQR の面積が 84cm² になるæの変域と, そのxの変域のとき のxとyの関係を表す式をかくこと。 条件Ⅱ 条件 Ⅰ で求めた式を使って答えを求める過程をかくこと。 条件ⅡI 解答欄の [ | の中には、あてはまる数をかくこと。 上 秒後 4 〔道の 登山 一本道 屋まで では 8 あや を出子 一定 山小麦 午前 次 (1) 午前 山頂ま 説明 あてに (2) ア (説 あ て か

回答募集中 回答数: 0