勉強方法 中学生 約3年前 秋田県は明日実テなのですが、範囲がイマイチ分かってません。どなたかこういう範囲っていうことはこういう問題とかが出るよ!などと教えて貰えませんか? 全教科じゃなくても大丈夫なので💦 お手数をお掛けします。 【放送による検査) ロメモをとりながら、集中して放送を聞く。 口話されているテーマや内容を正しくつかむ。 口聞き取った内容について、的確に答える。 【説明的文章) 口説明の内容をとらえ、 筆者の考えをまとめる。 口接続語の働きを理解し、文章の展開をとらえる。 口文章全体の要旨をとらえる。 【小説) 口文を正しく文節に分ける。 口文章の内容をとらえ、適切な部分を抜き出す。 口人物の心情をとらえ、 簡潔にまとめる。 【作文 ようし 【漢字の読み書き) 口漢字を正確に読む。 口漢字を正確に書く。 【古文 口歴史的かなづかいを現代かなづかいに直す。 口古語の意味を文脈からとらえる。 口文章の内容をとらえる。 口ある題について、 体験や見聞に基づいて、 自分の考えを作文 に書く。 【語句·文法) 口活用する自立語。 口四字熟語の意味。 口漢字の総画数,筆順。 【漢字の読み書き】 口漢字を正確に読む。 口漢字を正確に書く。 【説明的文章) 口説明の内容をとらえ、 筆者の考えをまとめる。 口接続語の働きを理解し、文章の展開をとらえる。 口文章全体の要旨をとらえる。 【小説) 口文を正しく文節に分ける。 口文章の内容をとらえ、適切な部分を抜き出す。 口人物の心情をとらえ, 簡潔にまとめる。 【表現) ようし 目標 【古文) 口歴史的かなづかいを現代かなづかいに直す。 口古語の意味を文脈からとらえる。 口文章の内容をとらえる。 点 口言葉を適切な表現に書き直す。 ロアナウンスの特徴を正しくとらえる。 「結果 とくちょ 点 【地理(世界の地域構成世界の諸地域)】 口さまざまな地図の見方。 口世界で信仰されているおもな宗教。 口世界のおもな地形。 【地理(日本の地域構成日本の諸地域)】 口日本の工業地帯(地域)。 口日本で生産されている農産物。 口おもな都道府県の特徴。 【地理(世界と比べた日本の特色)】 【歴史(古代までの日本·中世の日本)1 口古代までに使用されたもの。 口古代、中世のできごと。 口古代·中世に行われた政治。 【歴史(近世の日本)】 口近世の日本と外国とのかかわり。 口近世のおもなできごとがおこった年代。 【歴史(近代の日本: 日清 日露戦争以降を含まない)1 ロヨーロッパにおける近代化。 目標 |結果 口領土問題。 口日本が結んだ条約。 口日本の端に位置する島。 口明治政府が行った改革。 点 【空間図形) ○1.2年全範囲 口立体の辺と辺または面と面の位置関係。 【計算·基本問題 口正負の数の四則計算。 口式の値。 口比例の式。 口文字式の表し方のきまりに従い, 等式で表す。 口多角形の角。 【確率,方程式の利用) 口確率。 口立体の体積。 口文字式の四則計算。 【1次関数の利用) ログラフから適する値を求める。 口1次関数を利用して、 問題にあう数値を求める。 口条件にしたがって, yをrの式に表す。 【図形と合同) ロ三角形の合同の証明。 口合同な図形の性質を利用して, 角の大きさを求める。 口合同な図形の性質を利用して、 三角形の面積を求める。 学 口連立方程式。 目標 口回転体の表面積。 点 結果 口問題文から方程式をつくり, 解を求める過程を記述する。 トスマホやタブレットで予習ができるデジタルコンテンツ プレ·デジ へのリンクが裏面にあります。 2 OローK OローK 回 臨 回答募集中 回答数: 0
勉強方法 中学生 3年以上前 教えて下さい 9:03 1月3日 (月) 全 89%の [2]次の にあてはまる最も簡単な数や語句を書きなさい。 (1) 正六角形 ABCDEF において,頂点Aの上に2つの動く点X, Yがある。はじめに サイコロを投げ,出た目の数だけ点Xが反時計回りに頂点から頂点に移動する。次 にもう一度サイコロを投げ,出た目の数だけ点Yが時計回りに頂点から頂点に移動 する。このとき、3点A, X, Y を結んでできた図形について考えてみた。 B, E 0はじめに2の目が出て、次も2の目が出たときにできる図形は 三角形である。 2図形が直角三角形である確率は である。 3図形が三角形でない確率は である。 回答募集中 回答数: 0
勉強方法 中学生 4年以上前 (2)の解き方が解説を見てもなぜそうなるかよくわからないです。 5 次の図において, 5点A, B, C, D, Eは円Oの周上にある。人ムへABCを点O を中心として反時計回りに130* だけ回転移動させた図形がへCDEであり, 点Aを 移動させた点は, 点Cに重なっている。また, ABC =115", ZBCA =40'である。 このとき, 次の(1) (2)に答えなさい。 (1) ECDの大きさを求めなさい。 ーQ⑪?和49) 1人0-55 SE のアーエから1つ選び, その ZN TU9 ワ 110*( 3 115* 記4 (1) 回答募集中 回答数: 0
勉強方法 中学生 6年以上前 この問題に限らず、入試問題ってそれどこの勉強をしたら解けるようになる?と思う問題がある気がします…こういった問題がテストの点数の大部分になので中々点数が取れません(;;) 例えば関数なら関数の基礎をやり直すのですが… 対処法を教えてください🙏 をまとめましだた。 合わせてできる図形の重なる部 mal こついて調べました。』 後のQ), 1枚軒 えなさい。 ードのつくり方 ] 近藤さきが 16cm の正和角形を何村かフラくる 中 人0) 図1のように, 1 枚目の正太角形の対称則となる対角雪に 2枚目の正大角形の1 を合わ せて貼る。3 枚日以隆の正大角形同和 Shこのと 近 株からはみ出さないようにする : ( 周り合わせてできた図形の周の長きを調 (お欠埋となる寺 の中点を重: 語る 回答募集中 回答数: 0