学年

教科

質問の種類

数学 中学生

二次関数の問題です。 分かりません。

-3,9/ AK y=x² CU P y B(2, と直線y=x+4の交点を右の図のようにA,Bとし、 放物線 点Cを四角形OACB が平行四辺形になるようにとる。 このとき, 次の問い 点A(4,8)、点B(-2,²) に答えなさい。 DJ ニーズナ8ソ=2+4にスニート、スニ入すると、 2+4y=4+4 und A y=2 √2=X² = x+|x==1₁ 点の座標を求めなさい。 上の座標4-2=2 Y座標 5+2=10 *(4,8) Y-REAL-1₁9) ソニメに入を代入すると 点((2,10) ( (2,10) (3) x軸上の点P(2.0) を通り, 平行四辺形OACBの面積を2等分する直 線の式を求めなさい。 ] B (-2,2) X77X16 Y = 5A(-4,5) Y = 2 (y=-Sat 10 5 右の図のように放物線y=x上にx座標が - 3,2である点A,Bを とり、直線ABとx軸の交点をCとする。このとき、次の問いに答えなさい!ス+b (1) 点Cの座標を求めなさい。 = 2TR ²1"-LY=0 Sy=-2+b Y = -2161=X=6 を代入すると メスに代入すると直線AB を Yutbとおき、点A ソニー46(-3,1 B(2,4)を代入すると、 よって点((60) == Lath 42² ) 連立方程解くと 10 3 (6,0)) X=4&B (2,4) (2) AOACをx軸を軸として1回転させてできる立体の体積を求めなさい。 〕 y=-x+b y=-x+6YY=0 X1XD [ 162t 113) A 7 (3) △OAB をx軸を軸として1回転させてできる立体の体積を求めなさい。 (130大 (2,2) BX y=16x 16 右の図のように,放物線y= -2 上に座標がそれぞれ -4.4.2で ある点A, B, C をとる。 このとき、 次の問いに答えなさい。 (1) 直線AB上に点Dをとって, △OADの面積が四角形OABCの面積と 等しくなるようにするとき, 点Dの座標を求めなさい。 ただし, 点Dの 座標は正とする。 ソニーズにスニーチ、ス=チ、スーすると、 == (4.1) y=x+4 [ (5,8) 〕 A·C(8.²) (2) 点Oを通り、四角形OABCの面積を2等分する直線の式を求めなさい。 ] 2 JESJETA, y O 20 (-4,5) A A(4,8) -4 y=x² <B(2,4) 2 y 0 B(4,8) (C(2₂2) 2 4 I 1 2乗に比例する関数と図形の応用 99

未解決 回答数: 1
数学 中学生

この問題全部が謎すぎて分かりません😅 教えてくださいお願いします🙇‍♀️

most popular ets in our tleds we woy ob ( [3] 点○を中心とする円を円○とする。円○の外側に接する円を,円○をちょうど一周するよう にいくつかかく。ただし、 外側の円は互いに接しており, 半径がすべて等しい。 例えば,図1は8 個,図2は23個の場合である。 このとき、 次の各問いに答えよ。) ode is v V kozuod gid yox mi() so odT (s) H Ken >DES 7 \Yqoua Ryota J Cinly Owls Ottom 自衛白書a エ目番8⑤ 目書 86 目書 ② bornnelcinit leintaine offiapittle sitibduodarealondar \ Instroquias Tolens sbobines Norte Nighindand otheqer / 図1 There is only oneditierence. 図2 "By the way, was e out (1) 問題の条件を満たすように,円Oの外側に半径rの円を4つかく。円〇の半径が2-1の とき、円Oの外側にかいた円の半径r を求めよ。 D (2) 問題の条件を満たすように,円Oの外側に円Oと半径の等しい円をいくつかかく。 このとき、 円Oの外側にはいくつの円がかけるか E (3) 円○および円Oの外側のすべての円の面積と,円Oの外側の円を すきま かくときに生じるすべての隙間の面積の和 (図3のようにかげ ■」 をつけた部分の面積の和) をSとする。 (2)の場合で, 円 の半径が1のときのSを求めよ。 F 図3

解決済み 回答数: 1
1/3