学年

教科

質問の種類

数学 中学生

解き方わからないので教えて欲しいです

ートテスト④ (2次関数)を以下の日程で行います。 全クラス 期末テスト後最初の授業 (2次方程式と一緒にやります) 追試 22日 (金) 放課後3-3 問題は以下の通りです。 2学期の成績は、 レポートテスト次第 3/4 1. 関数y=ax2 のグラフの特徴を2つあげなさい。 どの2つをかいてもよい。 (完答1点) 2.2次関数y=2x24x+3のグラフの書き方。 (1点×2) ※既習事項を生かしての穴埋めになっていますが、 グラフの書き方を調べておきましょう。 3.図の長方形ABCD は、 AB=4cm、AD=2cmであり、 辺AB, CDの中点をそれぞれE,Fとし、線分 E Fをひく。 2点P,Qは、同時にAを出発し、Pは毎秒1cmの速さで辺上をA→E→B→Cの順に動き、 Cで停止する。 Q は毎秒1cmの速さで辺や線分上をA→D→F→Eの順に動き、Eで停止する。 P, Qが出発してから秒後の三角形APQの面積をcmとして、その変化の様子を調べる。 次の問に 答えなさい。 ただし、3点A, P,Qが一直線上にあるとき、 = 0 とする。 (1点×4) (1)x=3のとき、 の値を求めなさい。 (2)≦x≦6のとき、y=0のとき、x=t である。tの値を 求めなさい。 (3) 4≦x≦tのとき の式で表しなさい。 (4)P,Q が出発してから停止するまでの、との関係を表す グラフを図にかきなさい。 D 1 E 1.3はについては、まったく同じ問題です!2は調べて準備しておきましょう。 4. 図のように、 △ABC と長方形 DEFGが並んでいます。 長方形を固定し、 点Cが点Fに重なる まで三角形が矢印方向に移動するとします。 三角形の動く速さを秒速1cm、 秒後の重なっている IC 部分の面積をcmとする。 このときの問題。 (1点×3) A 4cm ※(3) はこれ↓ -4cm C (E) 8cm- Acm (3) 問題の条件変更や付け加えを1つ考えて問題をつくりなさい。 また、 問題の意図や解答などを 文章や図で説明しなさい。 4は (3) はそのままです。 (1)~(2)は問題を予想しておきましょう。 L

回答募集中 回答数: 0
数学 中学生

1の(2)わかりません

6 正三角形ABCと, 3点A, B, C を通る半径2cmの円0がある。 この円Oの 点Bを含まない AC 上に2点A, Cと異なる点Dをとる。 このとき、次の1,2に答えなさい。 ただし, 円周率はとする。 1 図1のように,点Dが,点Bを含まない AC において, AD と DC の長さの比 が13となるような位置にあるとする。 また, 線分AC, BD の交点をEとする。 このとき,次の (1)~(3) に答えなさい。 (1) ∠ACD の大きさを求めなさい。 (2) 線分CDの長さを求めなさい。 (3) △ABDと相似な三角形をすべて書き なさい。 ただし, 相似な三角形の対応する頂点 は△ABDと同じ順序で書くこと。 (1) 点Dを, 直線を軸として1回転させ てできる図形は円になる。 この円の面積が2cm² となるような 位置に点Dがあるとき, 点Bを含まない AC において, AD と DC の長さの比を 最も簡単な整数の比で表しなさい。 (2) 点Dが, S, T, Uの面積の和が最小 になるような位置にあるとする。 このとき, S, T, U を 直線を軸 として1回転させたときに, S, T, U それぞれが動いてできる立体の体積の和 を求めなさい。 図 1 (終わり) (5) B 2図2において,線分 AF は円Oの直径であり、 直線は2点A,Fを通る直線 である。 また, で示したように,円0の点Bを含まない AD, DC, CF と, 弦AD, DC, CF とでそれぞれ囲まれた部分を S, T, Uとする。 このとき,次の (1), (2) に答えなさい。 図2 A B E 0. IF m S U D -T

回答募集中 回答数: 0
1/9