学年

教科

質問の種類

数学 中学生

23ページは⑷、24ページは2のエ〜コまで、25ページは⑷を教えてください。一つでも大丈夫です!!

日 点 Step B 図1のような, 縦5cm 横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま、 図2 のように,m枚を下方向につないで長方形Bをつくる。 次に, そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】 は,次の(ア)(イ) のいずれかとする。 はば (ア) 幅1cm重ねてのり付けする。 とうめい (イ) すき間なく重ならないように透明なテープを貼る。 数N の倍 【つなぎ方】 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm -31cm 右 8cm 5cm m枚 9cm -1cm m枚 1cm テープで貼る 下 第1章 23 145 第6章 実力テスト n列-- (図1) (図2) (図3) のり付けして重なった部分 (図4) 例えば、図4の ①10×40=400cm² (イ)で2回つな 横の長さが31 '58 129×2+13×3 (2)(8×4-3)×2×1+(5×3-2)×3×1-6 り,そのBを4列, (ア) で1回, 39 -691cm² 4であり, たての長さが9cm, 39cm となる。 [栃木] (1) 【つなぎ方】は,(3) たこのとき,Cの面積を求め なさい ( 10点 べて (2) 【つなぎ方】 表せ なった部分の (4) あるか =102 皮」で 世院高] た。 このとき, のり付けして重 (3)A をすべて (ア)でつないでBをつくり, そのBをすべて(イ)でつないでCをつくった。 Cの 周の長さをlcm とする。 右方向の列の数が下方向につないだ枚数より4だけ多いときは6 の倍数になる。このことをmを用いて説明しなさい。 ( 15点) (4)Cが正方形になるときの1辺の長さを短いほうから3つ答えなさい。(10点) 23

回答募集中 回答数: 0
数学 中学生

教えてくださった方フォローします!教えてください🙏🙏🙏

応用 例題 6 考え方 6人を次のように分けるとき, 分け方は何通りあるか。 (1) A,B,Cの3つの部屋に2人ずつ分ける。 (2) 2人ずつの3つの組に分ける。 (2) は, (1) 部屋 A, B, C の区 別がない場合である。 {a,b} {c, d} {e, f} ↓ ↓↓ A B C (1) での A CO B 分け方 たとえば, (2) での1つの分け方 {a,b},{c,d}, {e, f} におい て、この3つの組に A, B, Cの 名前をつけると, (1) での分け方 が作られる。 (2) での1つの分け B A C 10 方から, (1) での分け方が何通りずつ作られるか考える。 (1) 部屋Aの2人の選び方は C2通りある。 部屋Bの2人の選び方は残りの4人から選ぶので2通り 部屋 A, B の人が決まれば、残りの部屋Cの2人は決まる。 よって, 分け方の総数は,積の法則により 15 6C2×4C2=15×6=90 90 通り (2) (1) で, 同じ人数の組 A,B,Cの区別をなくすと, 3! 通り ずつ同じ分け方ができる。よって,分け方の総数は 90 90 3! 6 = =15 答 15通り 【?】 (1) Aに1人, Bに2人, Cに3人と分ける。 20 (2)1人,2人,3人の3つの組に分ける。 という問題の場合 (2) において (1) の答えを3! で割る必要があるだろ うか。 また,それはなぜだろうか。 8人を次のように分けるとき, 分け方は何通りあるか。 (1) A,B,C,D の4つの組に、2人ずつ分ける。 25 (2) 2人ずつの4つの組に分ける。 (3)3人,3人, 2人の3つの組に分ける。 Links イメージ 解答 目標 練習 33 5 第1章 場合の数と確率 海 洋 2

回答募集中 回答数: 0
数学 中学生

221ページの問2と問3、222ページの問1、223ページの 問2と3と4、224ページの問1と2、225ページの問3と練習1.2.3を教えてください!

ページの度数分布表について、 次の問いに答えなさい。 1) 60点をとった生徒は,との階級にはいるか。 12)度数がもっとも大きい階級はとれか。 12) 点数が70点以上の生徒数を求めよ。 (4)点数が40点未満の生徒数を求めよ 度数の分布を見やすくするために,分布をグラフで表すことがある。 問 第8章 資料の活用·確率 220 1資料の散らばりと代表値 資料の散らばりと代表値 221 英語と数学のテストの得点 ■ヒストグラム 右の表は、ある ついて、英語と数 番号英語数学番号 英語数学番号英語数学 95 出席 得点(点)出席 得点(点)出席 得点(点) 右のグラフは, 前ページの (人 度数分布表をもとに, 階級の 幅を横の辺,度数を縦の辺と する長方形を順々にかいて, 度数の分布を表したものであ クラスの30人に 81 63 92 27| 20 30 75 88 34 22 65 学のテストの得点 を調べたものであ 3 12 47 11 53 18 22 82 71 89 57 26 35 75 17 43 20 48 38 42 26 2 23 35 30 80 30 得グラフとヒストグラム 算数で学んだ棒グラフは、 備がとびとびの集であり 費料の制数を表す夏の辺と うしは離れている。 13 45 10 24 41 53 14) 35 9 25 66 89 8 る。 15) 52 57 26 26 54 15 7 この表からは、 16 60 6 75 27 55 33 る。 一方、ヒストグラムは、 種軸に職の幅を通とする 長方形をかくので、 度数を 表す編の辺とうしは強する。 48 5 生徒1人ひとりの 94 72 28 72 このようなグラフを ヒス トグラム または,柱状グラ フという。 18 58 4 得点はわかるが、 44 36 19 45 35 29 3 ある生徒の教科の 9 10 48 38| 30 31 80 20 58 1 得点がこの集団の 中でどのような位置にあるのか, また, 英語と数学を比べて集団全 体として、どのようなちがいがあるのか,などはわかりにくい。 そこで、ここでは,目的に合わせた資料の整理のしかたについて 長方形の重積と関数 階級の度数が長方もの の辺であることから、長方 形の面積は度数に比例す る。 20 30 40 50 60 70 80 90 100(点) ■度数折れ線 ヒストグラムの全面積と度 数多角形の面積の関係 左の国で、斜織をひいた 2つの直角三角形は合同で あるから、その画標は等し い。同様に考えていくと。 ヒストグラムの全国積と 度数多角形の画種は等しい ことがわかる。 学ぶことにしよう。 ヒストグラムで,1つ1つ の長方形の上の辺の中点を, (人) 11 順に線分で結ぶと,右のよう 1/度数の分布 10 資料の散らばりのようすを示す値として, 資料にふくまれている 最大の値と最小の値との差を考えることがある。これを分布の範囲 という。範囲=最大の値一最小の値 画1 上の英語と数学の得点で. 資料の最大の値と最小の値,ま た。分布の範囲をそれぞれ求めなさい。 9 8 な折れ線グラフができる。た 7 だし、両端では, 度数0の階 6 5 級があるものと考え, 線分を 横軸までのばす。 度数分布曲線 階後の幅を小さくしてい くと、 度数折れは しだ いになめらかな曲に近づ いていく、このような曲線 を度数分布曲線という。 度数分布血織は、資料の 分布のちがいによって、い ろいろな型になるが、代表 前な型として、次のような ものがある。 4 3 このようなグラフを 度数 2 1 折れ線 という。 また, 度数 度数を整理するとき、「正」 の字を書いて数えると,数 え落としがない。このほか 「Z」や「冊」など, 5を ひとかたまりとする記号な どでもよい。 0 右の表は、上の英語のテストの得点をもとに, 10 英語のテストの得点 度数 折れ線と横軸とで囲まれた多 20 30 40 50 60 70 80 90 100(点) ■度数分布表 角形を 度数多角形 または, 点ずつの幅で区切って区間に分け, その区間には いる生徒の人数を調べてまとめたものである。 このように資料を整理するために用いる1つ1 つの区間を階級, 区間の幅を 階級の幅 , 階 級の中央の値を 階級値 , それぞれの階級にはい っている資料の個数を, その階級の 度数 という。 また、資料をいくつかの階級に分け, 階級ごと に度数を示して, 分布のようすをわかりやすくま とめた右の表を度数分布表 という。 度数分布多角形 という。 はば 階級(点) (人) 以上 未満 1 20~30 4 右の表において。 階級→20点以上30点未満。 …などの区間。 階級の幅→10点。 30~40 10 前ページの数学のテストの得点の表について, 次の問いに 答えなさい。 40~50 7 50~60 4 階級値→階級20点以上30 直未満の階級値は、 20+30 - 25(点) 2 度数→各階級の人数。 20点以上30点未満の階級 では、度数は1(人) 60~ 70 2 70~ 80 1 90 1 10点以上から始め, 階級の幅を10点として, 度数分 布表をつくれ。 対 よ AM 80 90~100 30 計 )でつくった度数分布表をもとにして, ヒストグラム と度数折れ線に表せ。

回答募集中 回答数: 0
1/2