学年

教科

質問の種類

数学 中学生

この問題の解説お願いします!!! 答えも載せておきます!!

4 右の図のように,水平に置かれた直方体状 の容器があり、その中には水をさえぎるため に、底面と垂直な長方形のしきりがある。 し きりで分けられた底面のうち、頂点Qを含 む底面をA, 頂点R を含む底面をBとし, Bの面積はAの面積の2倍である。 管aを 開くと, A側から水が入り、 管bを開く と, B側から水が入る。 aとbの1分間あた りの給水量は同じで、一定である。 40cm a 5 130cm A B R A側の水面の高さは辺QPで測る。 いま, aとbを同時に開くと, 10分後にA側の水面 の高さが30cmになり, 20分後に容器が満水になった。 管を開いてからx分後のA側の水 面の高さをycm とすると, xとyとの関係は下の表のようになった。 ただし, しきりの厚 さは考えないものとする。 (分) 0 6 ... 10 15 *** 20 y (cm) 0 ... ア 30 イ ... 40 次の(1)~(4)の問いに答えなさい。 (1)表中のアイに当てはまる数を求めなさい。 (2)xと」との関係を表すグラフをかきなさい。 (0≦x≦20) (3)xの変域を次の(ア), (イ)とするとき,x と y との関係を式で表しなさい。 (ア) 010 のとき (イ) 15≦x≦20 のとき (4)B側の水面の高さは辺RSで測る。 管を開いてから容器が満水になるまでの間で, A側 の水面の高さとB側の水面の高さの差が2cmになるときが2回あった。管を開いてから 何分何秒後であったかを, それぞれ求めなさい。

回答募集中 回答数: 0
数学 中学生

式の立て方を教えて欲しいです😭🙏

□ (1) 3けた自然数があり,十の位は4で,各位の数の和は百の位の数の6倍である。 百の位の数と一の位の数を 入れかえてできる3けたの自然数は,もとの自然数より396大きい。 もとの自然数を求めなさい。 式)」入外 □(2)1800円持ってケーキを買いに行った。2種類のケーキ A,Bを,Aを4個とBを3個買おうとしたところ120 円不足した。 そこで, Aを2個とBを5個買うことにしたら、 代金はちょうど1800円であった。 A1個, B1個 の値段をそれぞれ求めなさい。 (式) A 直線 AOO 〕,B[ 〕 □(3) 給水管 A, Bと水そうがある。 Aからは毎分8L, Bからは毎分6Lの水が出る。 また, A, B をいっしょに 使って水そうをいっぱいにするには15分間かかる。 いま, 水そうにAだけで水を入れ, 続いてBだけで水を入 れたら、いっぱいになるまでには,最初から31分間かかった。 Aで入れた水の量, Bで入れた水の量をそれぞ れ求めなさい。 (式) A[ ), B( □(4)ある列車が,450mの鉄橋を渡りはじめてから渡り終わるまでに25秒かかり,また,同じ速さで700mのトンネ 【ルに入りはじめてから出てしまうまでに35秒かかった。この列車の長さと,速さをそれぞれ求めなさい。 (式) して 6 長さ[〕速さ[ □(5) 2種類の製品 A,Bを作っている工場がある。先月生産した製品AとBの個数の比は5:8であった。今月は 先月に比べて,製品Aの生産個数は8%増加し,製品Bの生産個数は5%減少したので、今月の製品AとBを合 わせた生産個数は455個になった。 今月生産した製品 A,Bの個数をそれぞれ求めなさい。 (式) 製品 A [ 〕 製品B [ ]

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

一次関数の利用で①は[10.10]であってますか。 また②は問題の意味が全くわからなく何から求めればいいのかが理解できないです  わかる人教えてください(>_<)

(3) A駅とC駅の間を普通列車と急行列車が運行している。 A駅とC駅の間には普通列 車だけが止まるB駅があり, A駅からB駅までの距離は4km, B駅からC駅までの 距離は6kmである。 普通列車はA駅を出発して分速1kmでB駅に向かい, B駅で1分間停車した後、 分速 1.2kmでC駅に向かう。 このとき, 次の問いに答えよ。 ただし, 列車の長さは考えないものとし, また列車は各駅間を一定の速さで走るも のとする。 13 ① 普通列車がA駅を出発してからx分後のA駅から(-2,ZO 8 普通列車が進んだ距離をy kmとする。 普通列車が A 駅を出発してからC駅に到着するまで のx,yの関係をグラフに表すと概形は右の図のように なる。 このとき, 図の点Pの座標は, (クケ である。 4 出 A 6km 4KB from c A-B @ 1k B-1.2ma.2 3 , コサ) 2 11.2. 33, 10 4 るこ 52 45 -25 34-75-198 X9S ② 急行列車は普通列車がA駅を出発した2分後にA駅を出発して、 時速 akmで C駅に向かって走り、 普通列車がB駅で停車している間にB駅を通過した。 このとき, αがとることのできる値の範囲は, シス ≦a≦ センタである。

回答募集中 回答数: 0
数学 中学生

入試問題の一部で、 問題の意味は図でまとめたのですがそこから全く進みません。 面倒ですが誰か解いてくれる人、教えてください ①と②です

(③3) A駅とC駅の間を普通列車と急行列車が運行している。 A駅とC駅の間には普通列 車だけが止まるB駅があり, A駅からB駅までの距離は4km, B駅からC駅までの 01ROOPA 距離は6kmである。 20 普通列車はA駅を出発して分速1kmでB駅に向かい, B駅で1分間停車した後、 CO TARN 分速 1.2km で C駅に向かう。 このとき, 次の問いに答えよ。 ただし, 列車の長さは考えないものとし, また列車は各駅間を一定の速さで走るも 1 のとする。 ① 普通列車が A 駅を出発してからx分後のA駅からJ20 普通列車が進んだ距離をy kmとする。 8 普通列車が A 駅を出発してからC駅に到着するまで のx,yの関係をグラフに表すと概形は右の図のように なる。 このとき,図の点Pの座標は,(クケ である。 A 6km 4K B + ” ③ A-BO.1km コサ 12/20 10 O 45 P SM BAZORES 53 3301.24.7b41012 325417 B-C 1.2km、21 ② 急行列車は普通列車がA駅を出発した2分後にA駅を出発して, 時速 akmで C駅に向かって走り、普通列車がB駅で停車している間にB駅を通過した。 このとき, αがとることのできる値の範囲は, シス ≤a≤ セソタである。 x 0

回答募集中 回答数: 0
数学 中学生

(6)の④がわかりません😢 教えてください🙇‍♀️

(4) 表Iより 電気抵抗が5Ωのとき, 0.60A の電流が流れたので, オームの法則より, 5 (Ω)×0.60 (A) = につなぐ。 3 (V) ⑥ 発生する熱の量は電流を流した時間に比例する。 (5) 解答例の他に, 自由電子伝導電子・価電子,でもよい。 118 (6) ① ② 表 I において, 10 (Ω) 5 (Ω) になるので、電気抵抗と電流の関係は反比例。 表ⅡIにおいて, = 2 (倍), (6) 1① ア できる水の質量は, 100(g)× (3) ①1イ 電圧が2倍になると電流は2倍になるので、電圧と電流の関係は比例。表Ⅲにおいて、 1 ときの2倍になるので、水の流れにくさ(電気抵抗)は 2 (右図) 0.30 (A) 1 2 0.60 (A) = (2) I (倍)より、電気抵抗が2倍になると電流は! 1 ③ キ 10 (V) 5 (V) 0.84 (L) 0.42 (L) 間に管を通る水量は比例。 ③ 表Ⅲより, 水位の差が 7.0cm のとき, 1分間に1本の管を通る水量は0.84Lな ので, 1分間に2本の管を通る水量は 0.84 (L)×2(本) 1.68 (L) よって, 1分間にdから出る水量も = 2 (倍) より 水位の差が2倍になると1分間に管を通る水量は2倍になるので、水位の差と1分 ④ケ (7) 4(L) 1.68L ④ 図ⅣVのように2本の管をつないだとき, 1分間に2本の管を通る水量は、1本の管だけをつないだ = = 2 (倍), 0.30 (A) 0.15 (A) 倍になる。 (7) 0.2W の仕事率で, 1分間 = 60 秒間に行う仕事の大きさは,0.2(W)×60(s) = 12 (J) 12J の仕事で 30cm = 0.3mの高さまで運ぶことができる水の重さは, 12 (J) 20.3(m) = 40 (N) 40N の力で持ち上げることの 40 (N) 1 (N) x 34 ②ウ (4) ⓐ3 ⑥ ア (5) 電子 7.0 (cm) 3.5(cm) 2 2 (倍)より、 = 2 (倍), #LINE 4000 (g)より, 4kg 4kg の水の体積は4L。

回答募集中 回答数: 0
1/7