学年

教科

質問の種類

数学 中学生

平方根の活用の問題がわかりません 解説をお願いします

(愛媛) (3)2/2 活用しよう! 一紙にかくされたきまり一 この章で学んだ考え方を活用して、身近な題材の問題を解いてみよう。 問題 めいし わたしたちの生活の中には, 新聞, 雑誌, 名刺, 折り紙など,さまざまなところで 紙が使用されている。 紙の大きさや形にはいろいろなものがあるが, A 判, B判とい う紙の規格にそったものが多い。 A判の紙について調べたら, 次のことがわかった。 AO 判の紙は,短いほうの辺と長いほうの辺の長さの比が 1:√2 で, 面積が1mの長方形である。 AO A2 (大阪) A1判の紙は, A0判の紙の長いほうの辺の長さが半分にな るように, A0判の紙を1回折ってできた長方形である。 A1 A4 同じように, A2判の紙は A1判の紙の, A3判の紙は A2判の紙 の ・・・・・・, 長いほうの辺の長さが半分になるように折ってできた 長方形である。 A3 √3) -(√3) A3判のコピー用紙の短いほうの辺の長さをcmとして,次の問に答えなさい。 7 √2-9 1 右の図のように, A3判のコピー用紙と, A4判のノート, A5判の手帳がある。 次の長さ をαを使った式で表しなさい。 ① A3判のコピー用紙の長いほうの辺の長さ →ax√2 =√2a(cm) +35 の値を (京都) 7} 因数分解すると、 計算が簡単になるな √2 acm ② A4判のノートの短いほうの辺の長さ √2 2 √2a÷2= -a(cm) √2 2 acm ③ A5判の手帳の長いほうの辺の長さ → A4判の短い方の辺の長さに等しいです。 √2 2 acm A3判 A4判 A5判 ・ノート acm コピー用紙 手帳 √2 acm 2 ノート acm ・1 2 acm ABO2 acm コピー用紙の上に 重ねると左の図の ようになるね。 29 るとき,5m 直をすべて (鹿児島) 2 A3判の紙の面積は,何cmですか。 ■1m²=10000cm² だから, A1判の紙の面積10000÷2=5000(cm²) 3 A2判の紙の面積・・ 5000÷2=2500(cm²) a²=1250 √2 5×(整数) =45.5×4= 5, 3 A0 判の紙の面積を基準にすると, A1判の紙の面積は何倍にあたるかな。 A3判の紙の面積・・・ 2500÷2=1250(cm²) 1250cm2 1250/2 2 aの値を求めなさい。 ただし, 21.414 として小数第1位まで求めなさい。 12の結果より, a×√2a=1250 =625√2=625×1.414=883.75 5.20. 883.75の正の平方根は, 883.75=29.72... これを四捨五入して小数第1位まで求めると, 29.7 8305 a=29.7 東3年 53

未解決 回答数: 0
数学 中学生

中3数学です。 203の(3)がわからないので教えて欲しいです! 回答も載せてるので誰か教えていただけると嬉しいです。

(1) 定義域が-4≦x≦-2, 値域が 3y12 □(3) 定義域が√2≦x≦√3値域が 0≦y≦6 202 次の問いに答えなさい。 □ 11 関数 y=-2x2 について, 定義域が −2≦x≦a のとき, 値域が - 18≦y≦b となる。 定数a, b の値を求めなさい。 □ (2) 関数 y=ax (a≠0) について, 定義域が -4≦x≦2 のとき, 値域が by≦8 となる。定数a, bの値を求めなさい。 203 次の問いに答えなさい。 ■(1) 定義域が −2≦x≦1 である2つの関数 y=-3z,y=ax+b (a>0) の値域が一致するような, 定数a, bの値を求めなさい。 □(2) 定義域が -1≦x≦2 である2つの関数 y=2x2, y=ax+b の値域が一致するような, 定数 α b の値を求めなさい。 ■(3) 定義域が -3≦x≦2 である2つの関数 y=ax2 (a≠0), y=3x+b の値域が一致するような,定 数α, bの値を求めなさい。 □4) 定義域が−2≦x≦4 である2つの関数y=ax2 (a≠0),y=bx+2(b>0)の値域が一致するよう な定数 α, bの値を求めなさい。 204 右の図の直角三角形ABC は, 2辺AB, BC の長さの比が 1:3 である。 辺 ABの長さをxcm, △ABCの面積をycm² とす あるとき、次の問いに答えなさい。 (1)yをェの式で表しなさい。 また、xの値の範囲も答えなさい。 ■(2)(1) で求めた式について,yはxの関数であると考える。 定義域を 1≦x≦2 とするとき, 値域を求めなさい。 A xcm ycm2 h B ■3) (1)で求めた式について,リはこの関数であると考える。値域が3≦y≦9 となるとき,定義域を求 めなさい。 54 第4章 関数y=ax2 第4章

回答募集中 回答数: 0
1/33