学年

教科

質問の種類

数学 中学生

数学の高校入試過去問です❕ 不等号、小なりイコールがいまいち分かりません 2番の解説をお願いします

解き終わったら、「合格への軌跡」より到達度チェックの画面を立ち上げて, 自分の答えを入力しましょう。 間違えた問題にチェック。 【実力判定】到達度チェックの前に解き直しましょう。 ■ 次の文章を読み,下の問いに答えなさい。 (25点×4) 携帯電話の通信量を x GB, 月額利用料を円とする。 通信会社のA社, B 社は,利用料金を次のように設定している。 = (月額利用料) (基本料金) + (通信量に応じた通信料金) A社では,基本料金は一律600円であり, 通信料金は通信量 1GB あたり600円 である。 B社では,基本料金と通信料金は次の表のように設定している。 3GB 未満 基本料金 1600円 通信量 x GB に対する通信料金 3GB 以上 8GB 未満 一律1200円 400x P 8GB 以上 (通信制限が発生) 一律 3200 円 6000 5000 4000 200 2000 3200 3000 2000 1000 4800 0 4 5 6 7 8 1 2 3 X 3600 A2400 460077600 (1)A社について,yをxの式で表しなさい。 (2) B社について, 通信量が増加すると月額利用料も増加する範囲の①xの変域 X B 1200 245 A 4200 B 2400 および②yの変域を求めなさい。 35x08 ≤4≤ 3≦x≦8 2000 5000 XA2400 B2800 28004 CLA800 (3)1か月の通信量が3GBのXさん, 6GB のYさん, 8GB のZさんの3人の中

回答募集中 回答数: 0
数学 中学生

これはどうすればOKになりますか? 分からないので教えてください🙇🏻‍♀️՞

課題 12の問題を意図した通りに設計してみましょう。 (設計後、解答も書く) }には自然数 {__}には整数(符号付き) には有理数 -11 この辺で A 12 > ※元の問題: 表現するよ 右の図のように、2つの関数y=az', y=x+bのグラフがあり, その交点A, Bのæ座標は それぞれ−2と4である. ・・・中略・・・ 3点O, A, B を結んでできる 三角形の面積を求めなさい. 右の図のように,2つの関数y=ax,y=6x+bのグラフがあり, その交点A,Bのx座標はそれぞれ-1と22である. ・・・中略・・・ 3点0, A,Bを結んでできる角形の面積を求めなさい . y=ax2 ③高さの合計: 12 とする Bのx座標は とする ④Aのx座標を を使って表す 光 t ①AOABの面積24) とする 12$ 2 ---- (1) ここで,2次関数y=2x2 とする. <2x ²^<<3. すなわち, a 2とする。 (2) 次に, 切片公式と②で設定した数より 方程式を立てて解く. 2x² = 6x+8 2x²-6x x-3 a B7) 2x+6) 成立しないよ 46 ②共通の底辺とする ---- = = = 8 には文字式を入れる. 例えば, 8 38 ) と決定する x = 11 (3) 最後に,決定したと傾き公式を使って 傾きを求める. e=y=mx+x_P10 n y 1 Þ 傾き: m=a(p+q) 切片:n=-apa (4) 実際に問題を解いてみて意図した通りに 設計されたことを確認する. 21-11+22) = 44 44-22=22) +1 11×8×2 ・44 IC 22

回答募集中 回答数: 0
数学 中学生

この問題の解き方は合っていますか?

課題 12 の問題を意図した通りに設計してみましょう。 (設計後, 解答も書く) }には自然数 {__}には整数(符号付き)には有理数 -11 12 > ※元の問題: 右の図のように、2つの関数y=ax2, y=x+bのグラフがあり, その交点A,Bのæ座標は それぞれ−2と4である. ・・・中略・・・ 3点0, A, B を結んでできる 三角形の面積を求めなさい. 右の図のように,2つの関数y=az', y = 6_z+bのグラフがあり, A-t t ①△OABの面積:24 ) とする その交点A,Bのz座標はそれぞれ一日と22)である。 ・・・中略・・・ 3点O, A, B を結んでできる角形の面積を求めなさい。 ・・・・ y=ax2 ③高さの合計:12) とする Bのx座標はtとする ④Aの座標を を使って表す ---- (1,2次関数y=2x②とする. 2x² - 6x すなわち, a= 2とする。 (2) 次に, 切片公式と②で設定した数より 方程式を立てて解く. 2x 6x+8 「24」でくくる」 x-3 a = = = = 8 Bt, 2x+6) ②共通の底辺とする 8 3+8 例えば, には文字式を入れる. と決定する x = 11 (3) 最後に,決定したと傾き公式を使って 傾きを求める. MJ₁ |ℓ:y=mx+n -0 y WH P Þ 傾きm=a(p+q) 切片: n=-apa (4) 実際に問題を解いてみて意図した通りに 設計されたことを確認する. 4 11x8x2 2(-11+22) =44-22=22(傾 ・IC 44 22

回答募集中 回答数: 0
1/5