学年

教科

質問の種類

数学 中学生

規則性の問題です。 答えは(n-1)²×6-(n-2)²×6 =12n-18です。 式をどうやって組み立てたか等教えて頂けると嬉しいです!

先生「1辺の長さが1cmの小さい立 方体をたくさん用意して,これ らをすき間なく並べたものを積 み重ねて、大きい立方体をつく ります。 図1、図2図3は, それぞれ,大きい立方体の1辺 の長さが2cm3cm4cmの 場合を示しています。 (5)次は,先生とAさんの会話です。 これを読んで,下の①,②に答えなさい。 273 CAJARK 80 (ii) 図1 -(iii) ( 図28コ 図3 このとき、つくった大きい立方体を外側から見て,小さい立方体の面が何面見えるか を考えます。ただし、大きい立方体の6つの面はすべて外側から見えるものとします。 すると、図1の場合、8個の小さい立方体は,すべて外側から3面が見えます。図2の場 合,27個の小さい立方体のうち、(i)のように3面が見えるものは8個, (i)のように2面 が見えるものは12個あります。 では, (i)のように1面が見えるものは何個あるか数えて みましょう。また、外側からまったく面が見えないものは何個あるか求めてみましょう。」 Aさん「図2の場合, (ii)のように1面が見えるものを数えると6個あり,外側からまったく面が 見えないものは1個と求められます。」 01 先生「そうですね。次の表は,大きい立方体の1辺の長さと、外側から見える面が3面~1面 および外側からまったく面が見えない小さい立方体の個数との関係を整理したもので す。 大きい立方体の1辺の長さが6cmの場合はどうなるか考えてみましょう。」 大きい立方体の1辺の長さ(cm) 外側から3面が見える小さい立方体の個数(個) 外側から2面が見える小さい立方体の個数(個) 外側から1面が見える小さい立方体の個数(個) 2 3 4 56.. 800 |外側からまったく面が見えない小さい立方体の個数(個) 0 小さい立方体の個数の合計(個) -8|2 8 8 r 12 24 3648 62454 I 8 2764 8 27 64 125 Aさん「この表から考えると,大きい立方体の1辺の長さが6cmの場合、外側から3面が見え る小さい立方体は8個外側から2面が見える小さい立方体は 個外側からまっ たく面が見えない小さい立方体は64個です。 ここまでは、大きい立方体の1辺の長さ と小さい立方体の個数との関係がわかりました。ただ、外側から1面が見える小さい立 りました。ただ、 方体についてはわかりません。」 先生「外側から1面が見える小さい立方体は、 図2の (ii) のように, 大きい立方体の頂点や辺を 含まない位置にありますから、まず大きい立方体の1つの面に,外側から1面が見える 小さい立方体が何個あるのかを考え、その個数に大きい立方体の面の数をかけるとよい 「でしょう。」 0813 Aさん「なるほど。 外側から1面が見える小さい立方体は, 16×6で, 96個ですね。」 ×66 先生 「正解です。 よくできました。」

回答募集中 回答数: 0
数学 中学生

(2)のウ〜オで、−1や+1をしている意味がわかりません。(解説部分の赤線を引いてあるところ) わかる方、教えてください。

イ) △ABEの面積を求め 150枚のカードがある。これらのカードは下の図のように,表には,1から150までの自然数 が1つずつ書いてあり,裏には、表の数の,正の平方根の整数部分が書いてある。 (as) 表 裏 1 2 ア ア 表の数が150であるカードの裏の数は ア 以下の自然数 であるので、裏の数nは になる。 12 (I) nが 裏の数が 3 のとき ア 4 「次の(1)~(4)の問いに答えなさい。( 表の数が10であるカードの裏の数を求めなさい であるカードは,全部で 2 And <a (JT (2) 次の文章は,裏の数が n であるカードの枚数について, 花子さんが考えたことをまとめたも のである。 円 不 ア, イには数を, ウ~オには n を使った式を,それぞれ当てはまるように書きなさい。 √144 (√769 イ 枚ある。 (Ⅱ) n が ア 未満の自然数のとき 裏の数がnであるカードの表の数のうち, 最も小さい数はウであり, 最も大きい 数は エ である。 かくのく n²t2nt! よって, 裏の数がnであるカードは、 全部 で (オ) 枚ある。 't1- 5 2 裏 5150 表 ウ 182xZ! 「150の 調整数部分 (ⅡII) nがア 未満の自然数のとき 【裏の数がnであるカード】 22 ・n'in I n 全部で (オ) 枚 1 1 (3) 裏の数が9であるカードは全部で何枚あるかを求めなさい。 2ntL vô ca cà (4) 150枚のカードの裏の数を全てかけ合わせた数をPとする。Pを3”で割った数が整数にな るとき, m に当てはまる自然数のうちで最も大きい数を求めなさい。

回答募集中 回答数: 0
1/12