学年

教科

質問の種類

数学 中学生

(1)の答えって2枚目の写真のように表したらだめなんですか?

P.18~19 式による説明 3 余る よう 下の図のように,大きさのちがう半円と, 同じ長さの直線を組み合わせて,陸上競技用 P.20~21 等式の 完成 のトラックを作った。 カレンダーに並んだ数を いろいろな規則性がひそ 半円部分」 直線部分 幅1m 半円部分 岩手 ■ 数, 1, 5。 でわ 形で表されること am bm 第1レーンの 走者が走る距離 第4レーンの 走者が走る距離 第1レーン J 第4レーン もっと 直線部分の長さはam, 最も小さい半円の直 径は6m, 各レーンの幅は1mである。 また 最も内側を第1レーン, 最も外側を第4レー ンとする。 ラインの幅は考えず、円周率を とすると次の問いに答えなさい。 きょり (1) 第1レーンの内側のライン1周の距離をlm とすると,l=2a+b と表される。 この式を αについて解きなさい。 これかえ 右の図は、ある月のカ さんは、右の図のよう 1+8+9=18=3 × 6 のように、3つの数の 進さんは、他の部分 3の倍数になるか、 進さんの囲み ょう。(ただい (19) n 右下の この3 n+( n+5 和歌山 したか 3 の 囲み方を変 横一列 使って l=2a+b 10 両辺を入れかえる P.18~19 式による説明 2a+wb=l 箱の中 bを移項する 2a=l-rb (例 6枚入 l-rb 両辺を2でわる = とき, l-rb 数 2 a= 2 2 数こ 女数を 栃木 (2) 図のトラックについて,すべてのレーンの

解決済み 回答数: 1
数学 中学生

この問題の、二番(写真2枚目)をやったら、答えが n2+2n-3になりました。これって、合ってますか。因数分解しなくていいんですか。3番はできませんでした。良ければ教えてください。

3AさんとBさんは マス目を規則的に動くロボットを開発した。 このロ ボットは,次のようなルールで動くようにプログラムされている。 AさんとBさんは、このロボットがプログラムどおりに動くかどうか実 験を行った。 [ルール] H ・ロボットは,正方形のかどのマス目からスタートし、正方形のマス目を時計回りに外側か ら内側へ1マスずつ進む。 ・一度通ったマス目は通らず、すべてのマス目を通り、最後のマス目で止まる。 ・ロボットは, 1マス進むのに1秒かかり、進行方向を90°変えるのにも1秒かかる。 Aさん: じゃあ、実験を始めよう。 Bさん: 最初は, 2×2のマス目の正方形だね。 Aさん:計算上は,すべてのマス目を通るのに3マス進み, 進 行方向を2回変えるから, 5秒かかるはずだよね。 どうかな? (ロボット: ガシャン、ガシャン) Aさん: ぴったり5秒だ。 あっ、ロボットがこわれちゃったよ。 Bさん:え~。 3×3のマス目でも実験したかったのに。 Aさん:でも、 それなら計算で求められるよね。 すべてのマス 目を通るのに, 8マス進み、進行方向を4回変えるから, 12秒かかるはずだね。 2×2のマス目の正方形 スタート 地点 3×3のマス目の正方形 → スタート 地点

解決済み 回答数: 2
数学 中学生

(5)❸ 解説にある、×2をする理由を教えてほしいです!!

120 12 (5)<特殊・新傾向問題 規則性> ①第1区画の分数の分母は2=2′, 第2区画の分数の分母は4=22, 第3区画の分数の分母は8=2となっているので,第8区画に含まれる分数の分母は 2°=256 である。また,それぞれの区画の最後の分数の分子は、分母より小さい最も大きい奇数である。第 8区画の128個の分数のうち, 128番目の分数は,第8区画の最後の分数だから、分母が 256,分子 が255であり、である。 ②第8区画の 区画の128個の分数は, 255 253 255. 256 である。 1番目の分数と最後の分数の和は - 255 103 5251 256'256'256' 10256'256' 数の和は + 3 253 256 256 13番目の分数と最後から3番目の分数の和は? + =12番目の分数と最後から2番目の分 256 256 5 251 + 256 256 -=1となる。 同様に 00 16' 区画までの分数の個数は 1+2+4=7 (個), 第4区画までの分数の個数は 1+2+4+8=15(個), となる。ここで,それぞれの区画の最後の分数に着目すると, 第2区画は 4,第3区画は 区画は 考えると,128÷2=64より,和が1となる2つの分数の組は64組できるので,第8区画に含まれ る分数全ての和は, 1×6464 である。 ③それぞれの区画の分数の個数は、第1区画から, 1個, 2個,4個,8個となっている。これより,第2区画までの分数の個数は1+2=3(個), 第3 1. 第4 18.………であり,分子がその区画までの分数の個数となっていることがわかる。このことか 3 7 分数となる。1000 番目は,1024 1023 ら、分母が1024 である分数がある区画の最後の分数 - は、1番目の からかぞえて1023番目の 1024 12850=b+AS 1番目の12からか IXS 1023 より23個前の分数だから,分子が1023-2×23=977 であり,

解決済み 回答数: 1
1/39