学年

教科

質問の種類

数学 中学生

規則性の問題です。 答えは(n-1)²×6-(n-2)²×6 =12n-18です。 式をどうやって組み立てたか等教えて頂けると嬉しいです!

先生「1辺の長さが1cmの小さい立 方体をたくさん用意して,これ らをすき間なく並べたものを積 み重ねて、大きい立方体をつく ります。 図1、図2図3は, それぞれ,大きい立方体の1辺 の長さが2cm3cm4cmの 場合を示しています。 (5)次は,先生とAさんの会話です。 これを読んで,下の①,②に答えなさい。 273 CAJARK 80 (ii) 図1 -(iii) ( 図28コ 図3 このとき、つくった大きい立方体を外側から見て,小さい立方体の面が何面見えるか を考えます。ただし、大きい立方体の6つの面はすべて外側から見えるものとします。 すると、図1の場合、8個の小さい立方体は,すべて外側から3面が見えます。図2の場 合,27個の小さい立方体のうち、(i)のように3面が見えるものは8個, (i)のように2面 が見えるものは12個あります。 では, (i)のように1面が見えるものは何個あるか数えて みましょう。また、外側からまったく面が見えないものは何個あるか求めてみましょう。」 Aさん「図2の場合, (ii)のように1面が見えるものを数えると6個あり,外側からまったく面が 見えないものは1個と求められます。」 01 先生「そうですね。次の表は,大きい立方体の1辺の長さと、外側から見える面が3面~1面 および外側からまったく面が見えない小さい立方体の個数との関係を整理したもので す。 大きい立方体の1辺の長さが6cmの場合はどうなるか考えてみましょう。」 大きい立方体の1辺の長さ(cm) 外側から3面が見える小さい立方体の個数(個) 外側から2面が見える小さい立方体の個数(個) 外側から1面が見える小さい立方体の個数(個) 2 3 4 56.. 800 |外側からまったく面が見えない小さい立方体の個数(個) 0 小さい立方体の個数の合計(個) -8|2 8 8 r 12 24 3648 62454 I 8 2764 8 27 64 125 Aさん「この表から考えると,大きい立方体の1辺の長さが6cmの場合、外側から3面が見え る小さい立方体は8個外側から2面が見える小さい立方体は 個外側からまっ たく面が見えない小さい立方体は64個です。 ここまでは、大きい立方体の1辺の長さ と小さい立方体の個数との関係がわかりました。ただ、外側から1面が見える小さい立 りました。ただ、 方体についてはわかりません。」 先生「外側から1面が見える小さい立方体は、 図2の (ii) のように, 大きい立方体の頂点や辺を 含まない位置にありますから、まず大きい立方体の1つの面に,外側から1面が見える 小さい立方体が何個あるのかを考え、その個数に大きい立方体の面の数をかけるとよい 「でしょう。」 0813 Aさん「なるほど。 外側から1面が見える小さい立方体は, 16×6で, 96個ですね。」 ×66 先生 「正解です。 よくできました。」

回答募集中 回答数: 0
数学 中学生

一次関数の入試問題です。 教えてください

49 下の図で、四角形ABCDと四角形 EFGHは合同 な台形であり, 4点B, C, H, Eはこの順に直線 l 上にある。 四角形 EFGHを固定し, 四角形ABCD を 矢印の方向に毎秒2cmの速さで動かす。 点Cが点H と重なってからx秒後の2つの台形が重なった部分の 面積をycmとする。 これについて,PさんとQさんが下記のように会話 した。 あとの問いに答えなさい。 〔豊川〕 (3)会話文中のエ~カにあてはまる数を答えなさ い。 (4) 会話文中のキーケにあてはまる数を答えなさ い。 5cm/ .7cm- D G 4 cm B C 10cm H [E Pさん: 重なる部分の形はの値によって変化す るね。 Qさん: 例えば,r=4のとき, 重なる部分の形 はアになるね。 Pさん: 次は重なる部分の面積について考えてみ よう。 例えば, x=2のときのyの値はど うなるかな。 Qさん:まず,どのような形になるかを考えてか ら面積を求めるとよさそうだね。 Pさん: わかった! x=2のとき,y=イウと なったよ。 Qさん:今度は, 重なる部分の面積からェの値を 求めてみるのはどうかな。 Pさん:いいね。やってみよう。 Qさん: では,y=20になるときのxの値を求め てみて! Pさん: y=20となるときは2回あって, x= とカだったよ。 I オ Qさん: よくわかったね。 最後に, y をxの式で 表してみようよ。 Pさん:いいよ。 点Dが点Fと重なってから点A が点Fと重なるまでについて,yをェの 式で表すと, y=-キ x+クケとなっ たよ。

回答募集中 回答数: 0
数学 中学生

多角形の場合どのように変化していくのかを数字で表すことが難しくてわかりません 教えてください

49 下の図で、四角形ABCDと四角形 EFGHは合同 な台形であり, 4点B, C, H, Eはこの順に直線 l 上にある。 四角形 EFGHを固定し, 四角形ABCD を 矢印の方向に毎秒2cmの速さで動かす。 点Cが点H と重なってからx秒後の2つの台形が重なった部分の 面積をycmとする。 これについて,PさんとQさんが下記のように会話 した。 あとの問いに答えなさい。 〔豊川〕 (3)会話文中のエ~カにあてはまる数を答えなさ い。 (4) 会話文中のキーケにあてはまる数を答えなさ い。 5cm/ .7cm- D G 4 cm B C 10cm H [E Pさん: 重なる部分の形はの値によって変化す るね。 Qさん: 例えば,r=4のとき, 重なる部分の形 はアになるね。 Pさん: 次は重なる部分の面積について考えてみ よう。 例えば, x=2のときのyの値はど うなるかな。 Qさん:まず,どのような形になるかを考えてか ら面積を求めるとよさそうだね。 Pさん: わかった! x=2のとき,y=イウと なったよ。 Qさん:今度は, 重なる部分の面積からェの値を 求めてみるのはどうかな。 Pさん:いいね。やってみよう。 Qさん: では,y=20になるときのxの値を求め てみて! Pさん: y=20となるときは2回あって, x= とカだったよ。 I オ Qさん: よくわかったね。 最後に, y をxの式で 表してみようよ。 Pさん:いいよ。 点Dが点Fと重なってから点A が点Fと重なるまでについて,yをェの 式で表すと, y=-キ x+クケとなっ たよ。

回答募集中 回答数: 0
1/4