学年

教科

質問の種類

数学 中学生

中3数学です。 203の(3)がわからないので教えて欲しいです! 回答も載せてるので誰か教えていただけると嬉しいです。

(1) 定義域が-4≦x≦-2, 値域が 3y12 □(3) 定義域が√2≦x≦√3値域が 0≦y≦6 202 次の問いに答えなさい。 □ 11 関数 y=-2x2 について, 定義域が −2≦x≦a のとき, 値域が - 18≦y≦b となる。 定数a, b の値を求めなさい。 □ (2) 関数 y=ax (a≠0) について, 定義域が -4≦x≦2 のとき, 値域が by≦8 となる。定数a, bの値を求めなさい。 203 次の問いに答えなさい。 ■(1) 定義域が −2≦x≦1 である2つの関数 y=-3z,y=ax+b (a>0) の値域が一致するような, 定数a, bの値を求めなさい。 □(2) 定義域が -1≦x≦2 である2つの関数 y=2x2, y=ax+b の値域が一致するような, 定数 α b の値を求めなさい。 ■(3) 定義域が -3≦x≦2 である2つの関数 y=ax2 (a≠0), y=3x+b の値域が一致するような,定 数α, bの値を求めなさい。 □4) 定義域が−2≦x≦4 である2つの関数y=ax2 (a≠0),y=bx+2(b>0)の値域が一致するよう な定数 α, bの値を求めなさい。 204 右の図の直角三角形ABC は, 2辺AB, BC の長さの比が 1:3 である。 辺 ABの長さをxcm, △ABCの面積をycm² とす あるとき、次の問いに答えなさい。 (1)yをェの式で表しなさい。 また、xの値の範囲も答えなさい。 ■(2)(1) で求めた式について,yはxの関数であると考える。 定義域を 1≦x≦2 とするとき, 値域を求めなさい。 A xcm ycm2 h B ■3) (1)で求めた式について,リはこの関数であると考える。値域が3≦y≦9 となるとき,定義域を求 めなさい。 54 第4章 関数y=ax2 第4章

回答募集中 回答数: 0
数学 中学生

分かりやすい説明お願いします!

れ 均点は 甘いた式 (秋田) 地球儀上で,ブラジルは日本のおおよそ反対側にある。 現在の 直行便ができたらと仮定したときの, めいさんとパイロットである ところ、日本ブラジル間の飛行機の直行便はないが,下のは お父さんとの会話である。 きょり 動画が見られるよ。 めい もし、日本-ブラジル間の直行便ができたら, 飛行距離や飛行時間はどれくらいかな。 父 地面からの高さを高度というのだけど, 飛行機は高度約9~14km を飛ぶよ。 便によって, 高度は変わるんだけど,偏西風の影響を考えると,日本からブラジルに向かうときより, ブラジルから日本に向かうときのほうが低い高度を飛ぶことが多くなりそうだよ。 めい : 行きと帰りの飛行距離の差も求めてみようかな。 めいさんは,ブラジルは日本のちょうど反対側にあるものとし, 飛行距離は右の図のように半円の弧の長さで求められると考えた。 飛行機は一定の高度を保って飛び, 離着陸のことは考えないことに する。 地球の半径をkmとして,次の問いに答えなさい。 ① めいさんは、行き(日本からブラジルに向かうとき)は高度 akm,帰り (ブラジルから日本に向かうとき)は行きよりbkm 低い高度を飛ぶと考えた。 行きと帰りの飛行距離の差を求め なさい。 ただし, a>bとする。 1章 飛行距離 日本 ブラジル 行きは高度akm, 帰りは高度 (a-b)kmを飛ぶね。 式の計算 2匹 = ② ①の結果から, 行きと帰りの飛行距離の差についてわかることを次のア~エから選び, 記号 で答えなさい。 また、そのように考えた理由を説明しなさい。 ア 地球の半径の長さは関係するが, 行きの高度は関係しない。 イ 地球の半径の長さも、行きと帰りの高度の差も関係する。 ウ 地球の半径の長さは関係しないが, 行きの高度は関係する。 エ 地球の半径の長さは関係しないが, 行きと帰りの高度の差は関係する。 記号 ●説明 高度12km を飛び、地球の半径を6378km, 飛行機は時速900km で進み,円周率を3と すると,日本-ブラジル間の飛行時間は何時間か求めなさい。

回答募集中 回答数: 0
数学 中学生

至急です🏃💨 中2数学です🙇🏻‍♀️՞ 今週テストで解答配られてなくて丸つけ出来ないのでなるべく早く答え合わせしたくて丸つけして貰いたいです!! ベストアンサーつけます!

NO. 11 数学通信 「毎日少しずつ」 ~それがなかなかできねんだなあ~ 3年C組 1 ある中学校の2年生男子の握力の記録を運動部と文 1 化部に分けて調べたところ、次のような測定結果が得 られました。 下の問いに答えなさい。 文化部 (単位:kg) 34 30 40 43 20 運動部 第1四分位数 35 第2四分位数 40 |第3四分位数 41 運動部 (単位: kg) 40 27 44 38 41 38 48 41 40 37 31 32 17 34 36 41 25 30 45 35 39 24 \41 29 (1) 第1四分位数 29 (1) 運動部と文化部の第1四分位数, 第2四分位数, 第3四分位数を求めなさい。 (2) 運動部と文化部の四分位範囲を求めなさい。 文化部 第 2 四分位数 33 第 3 四分位数 39 運動部 6 (3) 次の図に運動部と文化部の箱ひげ図をかきなさい。 (2) 文化部 10 運動部 (4) 運動部と文化部ではどちらの方が散らばりが大き いといえますか。 その理由も答えなさい。 文化部 0 5 10 15 20 25 30 35 40 45 50 (kg) (3)左の図にかき入れなさい。 文化部 [理由] (4) 範囲が広い P150 50%. 2 次の箱ひげ図は, ある中学校における100人の生徒 の通学時間を表しています。 下のア~カに当てはまる 数を書きなさい。 2 25%. ア 35 10 15 20 25 30 35 40 45 50 55 (分) (1) 通学時間の中央値はア分,範囲はイ分, 四分位範囲はウ 分である。 イ ウ 40 15 (2)30分から45分の通学時間がかかる生徒はおよそ エ人である。 H 50 (3) 通学時間が45分以上の生徒の割合は,全体のほぼ オ 25 オ%であり,通学時間が50分の生徒は, 少なく ともカ人いる。 カ

回答募集中 回答数: 0