1
グラフと三角形の面積 右の図のような直線 ①,
②があり、直線②の式はy=2x-4 である。
(1) 直線 ①の式を求めなさい。
切片は8だから,y=ax+8 と表される。
点(80) を通るから, y=ax+8 に,x=8,
y=0を代入すると、
0=a×8+8,a=-1
(2) 点B,Cの座標を求めなさい。
直線②の切片は-4だから. B(0, -4)
y=2x-4にy=0を代入すると,
0=2x-4,x=2
よって, C(2,0)
(1)
180
4
/C4
-4/B
(2)
IC
B
C
y=-x+8
(0, -4)
(2, 0)
(1)
y
京
(2)
(: