学年

教科

質問の種類

数学 中学生

解説お願いします

2 下の図のように、箱Aと箱Bがある。 箱Aには1,2,3の数字が1つずつ書かれた3枚のカー ドが入っている。 箱Bには1,2,3,4,5,6の数字が1つずつ書かれた6枚のカードが入っ ている。それぞれの箱から1枚ずつカードを取り出す。 そして, 箱Aから取り出したカードに書か れた数字を十の位の数, 箱Bから取り出したカードに書かれた数字を一の位の数として,2けたの 自然数をつくる。 次の(1)~(3)に答えなさい。 ただし, 箱Aからどのカードが取り出されることも 箱Bからどのカードが取り出されることも,それぞれ同様に確からしいものとする。 1 2 3 1 2 3 4 5 6 箱A (1)つくった2けたの自然数が素数となる確率を求めなさい。 箱B (2) 2けたの自然数が4の倍数となる場合と5の倍数となる場合では, どちらが起こり やすいか。 それぞれの確率を求めて説明しなさい。 初学 (3) あみさんは、箱Aに4と5の数字が1つずつ書かれたカードを1枚ずつ、箱Bに0の数字が1 つ書かれたカードを2枚追加し,それぞれの箱から1枚ずつカードを取り出した。 箱Aから取り出したカードに書かれた数字を十の位の数, 箱Bから取り出したカードに書かれ た数字を一の位の数として, 2けたの自然数をつくったとき,この数が3の倍数となる確率を求 めなさい。 08- 08 08~ ROB

回答募集中 回答数: 0
数学 中学生

規則性の問題です。 答えは(n-1)²×6-(n-2)²×6 =12n-18です。 式をどうやって組み立てたか等教えて頂けると嬉しいです!

先生「1辺の長さが1cmの小さい立 方体をたくさん用意して,これ らをすき間なく並べたものを積 み重ねて、大きい立方体をつく ります。 図1、図2図3は, それぞれ,大きい立方体の1辺 の長さが2cm3cm4cmの 場合を示しています。 (5)次は,先生とAさんの会話です。 これを読んで,下の①,②に答えなさい。 273 CAJARK 80 (ii) 図1 -(iii) ( 図28コ 図3 このとき、つくった大きい立方体を外側から見て,小さい立方体の面が何面見えるか を考えます。ただし、大きい立方体の6つの面はすべて外側から見えるものとします。 すると、図1の場合、8個の小さい立方体は,すべて外側から3面が見えます。図2の場 合,27個の小さい立方体のうち、(i)のように3面が見えるものは8個, (i)のように2面 が見えるものは12個あります。 では, (i)のように1面が見えるものは何個あるか数えて みましょう。また、外側からまったく面が見えないものは何個あるか求めてみましょう。」 Aさん「図2の場合, (ii)のように1面が見えるものを数えると6個あり,外側からまったく面が 見えないものは1個と求められます。」 01 先生「そうですね。次の表は,大きい立方体の1辺の長さと、外側から見える面が3面~1面 および外側からまったく面が見えない小さい立方体の個数との関係を整理したもので す。 大きい立方体の1辺の長さが6cmの場合はどうなるか考えてみましょう。」 大きい立方体の1辺の長さ(cm) 外側から3面が見える小さい立方体の個数(個) 外側から2面が見える小さい立方体の個数(個) 外側から1面が見える小さい立方体の個数(個) 2 3 4 56.. 800 |外側からまったく面が見えない小さい立方体の個数(個) 0 小さい立方体の個数の合計(個) -8|2 8 8 r 12 24 3648 62454 I 8 2764 8 27 64 125 Aさん「この表から考えると,大きい立方体の1辺の長さが6cmの場合、外側から3面が見え る小さい立方体は8個外側から2面が見える小さい立方体は 個外側からまっ たく面が見えない小さい立方体は64個です。 ここまでは、大きい立方体の1辺の長さ と小さい立方体の個数との関係がわかりました。ただ、外側から1面が見える小さい立 りました。ただ、 方体についてはわかりません。」 先生「外側から1面が見える小さい立方体は、 図2の (ii) のように, 大きい立方体の頂点や辺を 含まない位置にありますから、まず大きい立方体の1つの面に,外側から1面が見える 小さい立方体が何個あるのかを考え、その個数に大きい立方体の面の数をかけるとよい 「でしょう。」 0813 Aさん「なるほど。 外側から1面が見える小さい立方体は, 16×6で, 96個ですね。」 ×66 先生 「正解です。 よくできました。」

回答募集中 回答数: 0