学年

教科

質問の種類

数学 中学生

難しいかもしれませんが この問題の解き方を教えてください🙇🏻‍♀️

り 2 公 B,Cがあり,x座標はそれぞれ- 2, 1,3である。 直線ACとy軸との交点を点Dとし, 線分CD上に2点 C, D また、xの変域が−2≦x≦1のとき,yの変域は0≦x≦2で ある。 ......① 太郎さんと花子さんは次の問題について話している。 次の各問いに答えよ。 問題 2Ⅱ) 人外学高学賃 図のように、関数y=ax(aは定数)のグラフ上に3点A. D A €22 とは異なる点Pをとる。 四角形POBCの面積が3となるときの点Pの座標を求めよ。 -20 1 高 花子: 問題の下線部 ①から,点Aのy座標が分かるね。 太郎:そうだね。 点Aの座標が分かればα=アとなるよ。 次に,点Bと点C の座標も求めておこう。 うーん、四角形POBCの面積を直接求めるのは難しそうだなあ・・・ 花子:まず四角形DOBCの面積を求めてみるのはどうだろう。それなら,3点 A,B,Cの座標からAC/ OBとなるから、求めやすいんじゃないかな。 太郎:そうか! 四角形DOBCの面積はイだから,そこから四角形POBCの 面積が3となるような点Pの座標を見つければ良いね! (1) 会話文のア, イに入る数を答えよ。 (2)点Pの座標を求めよ。 (8-x) 自 80% SW 8 3 大小2つのさいころを投げたとき, 大きいさいころの出た目をα, 小さいさいころの出た bとし,直線y=x-bを考える。 この直線とx軸,y軸の交点をそれぞれA,Bとし,原点を0とするとき、次の確率を求めよ。 (1) 直線の傾きが1以下になる確率 (2) OABが直角二等辺三角形になる確率 (3)点Aのx座標が整数になる確率 DEAREA&&58=0A = 4 図のように, AB=AE=1, AD=2の直方体 ABCDEFGHがある。 点Pが対角線AG上を動く とき、次の問いに答えよ。 (1) AP:PG=3:1のとき, 四角すいP-EFGHの体積を求めよ。 (2) CPの長さが最小になるときのCPの長さを求めよ。 (3)点Pが平面 CHF 上にあるときのCPの長さを求めよ。 (途中経過を図や式で示すこと) H A IB E F

回答募集中 回答数: 0
数学 中学生

この答えが 1番がY =20で、2番が 5秒後から9秒後まで なんですけど何でか教えてください

(3) 図のように、AB=6cm, AD=4cmの長方形ABCD と、 1週 が 8cmの正方形から1週が4cmの正方形を切り取った形の図形 EFGHIJ がある。 点B、C、F、Gは同じ直線上にあって、CDと EFは重なっている。 図形 EFGHIJは固定したまま、長方形 ABCD を直線にそって、矢印の方向に、頂点Bが頂点Gに重なるま で、毎秒1cmの速さで移動させる。 図11は、移動の途中のようすを 示したものである。 H dem D dem 6cm E 4cm Sem B CF Semi- 図 H 長方形ABCDが移動を始めてからで秒後の、長方形ABCD と図 A D 形 EFGHI が重なった部分の面積を!cmとする。 E このとき、次の①、②の問いに答えなさい。 jem ただし、長方形ABCD が移動を始めるとき、および、頂点Bが頂 BFC G 点Gに重なったときは、y=0 とする。 図Ⅱ なお、下の図を必要に応じて使ってもよい。 ① z=6のときの”の値として正しいものを、次のアからオまでの中から一つ選びなさい。 ア y=20 1 y=22 ウy=24 I y=26 *y=28 ② 長方形ABCD と図形 EFGHIJ が重なった部分の面積が18cm以上になっているのは、 長方形 ABCL が移動を始めて何秒後から何秒後までか、次のアからオまでの中から一つ選びなさい。 ア 12/23秒後から 21/27秒後まで イ 9 2 一秒後から9秒後まで ウ 5秒後から1秒後まで 19 エ 5秒後から9秒後まで オ 5秒後から秒後まで

回答募集中 回答数: 0
数学 中学生

(4)の解き方がわかりません💦💦 ちなみに ア12 イ7 ウnの2乗 エnの2乗+2n オ2n+1 です‼︎

6 150枚のカードがある。 これらのカードは下の図のように、表には 1から10までの自然数 が1つずつ書いてあり、裏には、表の数の、正の平方根の整数部分が書いてある。 表 1 2 裏 1 1 3 4 5 150 150 の 2 2 整数部分 次の(1)~(4)の問いに答えなさい。 (1) 表の数が10であるカードの裏の数を求めなさい。 (2)次の文章は,裏の数が”であるカードの枚数について, 花子さんが考えたことをまとめた ものである。 アイには数を,ウ~オにはn を使った式を, それぞれ当てはまるように書きなさい。 表の数が150 であるカードの裏の数は ア であるので、裏の数 n は ア 以下の自然数になる。 (I) n ア のとき 裏の数が ア であるカードは,全部で イ 枚ある。 (II) nが ア 未満の自然数の 裏の数がnであるカードの表の数のうち, 最も小さい数は ウ であり, 最も大きい 数は エ である。 よって, 裏の数が”であるカードは,全部 で( オ 枚ある。 (II) nが ア 未満の自然数のとき 【裏の数がnであるカード】 表 ウ エ 裏 12 n 全部でオ 枚 (3)裏の数が9であるカードは全部で何枚あるかを求めなさい。 (4) 150枚のカードの裏の数を全てかけ合わせた数をPとする。 Pを3" で割った数が整数に なるとき, m に当てはまる自然数のうちで最も大きい数を求めなさい。

回答募集中 回答数: 0
数学 中学生

規則性の問題です。 答えは(n-1)²×6-(n-2)²×6 =12n-18です。 式をどうやって組み立てたか等教えて頂けると嬉しいです!

先生「1辺の長さが1cmの小さい立 方体をたくさん用意して,これ らをすき間なく並べたものを積 み重ねて、大きい立方体をつく ります。 図1、図2図3は, それぞれ,大きい立方体の1辺 の長さが2cm3cm4cmの 場合を示しています。 (5)次は,先生とAさんの会話です。 これを読んで,下の①,②に答えなさい。 273 CAJARK 80 (ii) 図1 -(iii) ( 図28コ 図3 このとき、つくった大きい立方体を外側から見て,小さい立方体の面が何面見えるか を考えます。ただし、大きい立方体の6つの面はすべて外側から見えるものとします。 すると、図1の場合、8個の小さい立方体は,すべて外側から3面が見えます。図2の場 合,27個の小さい立方体のうち、(i)のように3面が見えるものは8個, (i)のように2面 が見えるものは12個あります。 では, (i)のように1面が見えるものは何個あるか数えて みましょう。また、外側からまったく面が見えないものは何個あるか求めてみましょう。」 Aさん「図2の場合, (ii)のように1面が見えるものを数えると6個あり,外側からまったく面が 見えないものは1個と求められます。」 01 先生「そうですね。次の表は,大きい立方体の1辺の長さと、外側から見える面が3面~1面 および外側からまったく面が見えない小さい立方体の個数との関係を整理したもので す。 大きい立方体の1辺の長さが6cmの場合はどうなるか考えてみましょう。」 大きい立方体の1辺の長さ(cm) 外側から3面が見える小さい立方体の個数(個) 外側から2面が見える小さい立方体の個数(個) 外側から1面が見える小さい立方体の個数(個) 2 3 4 56.. 800 |外側からまったく面が見えない小さい立方体の個数(個) 0 小さい立方体の個数の合計(個) -8|2 8 8 r 12 24 3648 62454 I 8 2764 8 27 64 125 Aさん「この表から考えると,大きい立方体の1辺の長さが6cmの場合、外側から3面が見え る小さい立方体は8個外側から2面が見える小さい立方体は 個外側からまっ たく面が見えない小さい立方体は64個です。 ここまでは、大きい立方体の1辺の長さ と小さい立方体の個数との関係がわかりました。ただ、外側から1面が見える小さい立 りました。ただ、 方体についてはわかりません。」 先生「外側から1面が見える小さい立方体は、 図2の (ii) のように, 大きい立方体の頂点や辺を 含まない位置にありますから、まず大きい立方体の1つの面に,外側から1面が見える 小さい立方体が何個あるのかを考え、その個数に大きい立方体の面の数をかけるとよい 「でしょう。」 0813 Aさん「なるほど。 外側から1面が見える小さい立方体は, 16×6で, 96個ですね。」 ×66 先生 「正解です。 よくできました。」

回答募集中 回答数: 0